Statement of problem: A difficulty in achieving a passive-fitting prosthesis can be overcome by individual crown restoation of multiple implants. But individualized crown has another difficulty in control of contact tightness and stress distribution. Purpose: This in vitro study is to evaluate the stress distribution and the magnitude in the supporting tissues around Endopore implants with different crown lengths, interproximal contact tightness, and the splinting effects. Material & methods: Three Endopore implants($4.1{\times}9mm$) were placed in the mandibular posterior edentulous area distal to the canine and photoelastic model was made with PL-2 resin(Measurements Group, Raleigh, USA). Restorations were fabricated in two crown lengths: 9, 13 mm. For non-splinted restorations, individual crowns were fabricated on three custom-milled titanium abutments. After the units were cemented, 4 levels of interproximal contact tightness were evaluated: open, ideal($8{\mu}m$ shim stock drags without tearing), medium($40{\mu}m$), and heavy($80{\mu}m$). For splinted restorations, 3-unit fixed partial dentures were fabricated. This study was examined under simulated non-loaded and loaded conditions(6.8 kg). Photoelastic stress analysis was carried out to measure the fringe order around the implant supporting structure. Results: 1. When restorations were not splinted, the more interproximal contact tightness was increased among the three implants, the more stress was shown in the cervical region of each implant. When crown length was increased, stresses tended to increase in the apex of implants but there were little differences in stress fringes. 2. When nonsplinted restorations were loaded on the first or third implant, stresses were increased in the apex and cervical region of loaded implant. Regardless of interproximal contact tightness level, stresses were not distributed among the three implants. But with tighter interproximal contact, stresses were increased in the cervical region of loaded first or third implant. 3. When the nonsplinted restorations were not loaded, there were little stresses on the supporting structure of implants, but low level stresses were shown in the splinted restorations even after sectioning and soldering. 4. With splinted restorations, there were little differences in stresses between different crown lengths. When splinted restorations were loaded, stresses were increased slightly on the loaded implant, but relatively even stress distribution occurred among the three implants. Conclusions: Splinting the crowns of adjacent implants is recommended for Endopore implants under the overloading situation.
Kim, Woo-Sung;An, Kyung-Mi;Sohn, Dong-Seok;Jung, Heui-Seung;Shin, Im-Hee
The Journal of the Korean dental association
/
v.47
no.12
/
pp.823-829
/
2009
Purpose : The aim of this study was to evaluate the survival rate of sintered porous-surfaced implants placed in the edentulous posterior mandibles, in relation to implant length and diameter, crown-to-implant ratio, and types of prostheses, for a maximum of eight years of functioning. Material and Methods : The study group consisted of 43 partially edentulous patients who visited Catholic University Hospital of Daegu and one private dental clinic. A total of 122 sintered porous-surfaced implants n $Endopore^{(R)}$ (Inn ova Life Sciences, Toronto, Ontario, Canada) -- were placed in the edentulous posterior mandibles, Two diameter sizes (4.1 mm and 5.0 mm) and four lengths (5.0 mm, 7.0 mm, 9.0 mm, and 12.0 mm) were used. One hundred and three implants were splinted and 21 implants were nonsplinted. The survival rates of the implants in relation to length, diameter, crown-to-implant ratio, and types of prostheses were investigated. Statistical data were analyzed using SPSS Win.Ver 14.0 software with the Chi-square test. Results : The survival rate of the 4.1mm diameter implants was 100% and 91.2% for the 5.0mm diameter implants. The survival rates of the implants of differing diameters were found to be statistically different (p=0.005). The survival rates of both the 5.0mm and 7.0 mm length implants were 100%. The survival rate of the 9.0mm length implants was 97.9% and for the 12.0mm length implants was 95.1%. There was no statistical difference in survival rates for the differing lengths of implants. Of the 103 prostheses that were splinted, the survival rate was 98.0%. The survival rate of splinted prostheses was higher than that of the non-splinted prostheses, but was found to be not statistically different. There were no failed cases when the crown-to-implant ratio was under 1.0. When the crown-to-implant ratio was between 1.0 and 1.5, the failure rate of the implants was 6.7%. No failure was recorded with the ratio range of 1.5 to 2.0. Relative to the crown-to-implant ratio of 1.0, the failure rates were statistically different (p=0.048). Discussion and Conclusion : The cumulative survival rate of the porous-surfaced implants placed in the edentulous posterior mandibles was 97.5%. Short porous-surfaced implants showed satisfactory results after a maximum of nine years of functioning in the edentulous posterior mandibles.
PURPOSE. To compare the clinical outcomes of two types of implant restoration for posterior edentulous area, 3-unit bridge supported by 2 implants and 3 implant-supported splinted crowns. MATERIALS AND METHODS. The data included 127 implant-supported fixed restorations in 85 patients: 37 restorations of 3-unit bridge supported by 2 implants (2-IB), 37 restorations of 3 implant-supported splinted crowns (3-IC), and 53 single restorations (S) as controls. Peri-implantitis and mechanical complications that occurred for 14 years were analyzed by multivariable Cox regression model. Kaplan-Meier curves and the multivariable Cox regression model were used to analyze the success and survival of implants. RESULTS. Peri-implantitis occurred in 28.4% of 2-IB group, 37.8% of 3-IC group, and 28.3% of S control group with no significant difference. According to the implant position, middle implants (P2) of the 3-IC group had the highest risk of peri-implantitis. The 3-IC group showed a lower mechanical complication rate (7.2%) than the 2-IB (16.2%) and S control group (20.8%). The cumulative success rate was 52.8% in S (control) group, 62.2% in 2-IB group, and 60.4% in 3-IC group. The cumulative survival rate was 98.1% in S (control) group, 98.6% in 2-IB group, and 95.5% in 3-IC group. There was no significant difference in the success and survival rate according to the restoration type. CONCLUSION. The restoration type was not associated with the success and survival of implants. The risk of mechanical complications was reduced in 3 implant-supported splinted crowns. However, the middle implants of the 3 implant-supported splinted crowns had a higher risk of peri-implantitis.
Kim, Jin-Ho;Kim, Hyung-Seob;Choi, Dae-Gyun;Kwon, Kung-Rock
The Journal of Korean Academy of Prosthodontics
/
v.44
no.5
/
pp.561-573
/
2006
Statement of the problem: In cases of low bone level in maxilla followed by extraction due to severe periodontitis or enlarged maxillary sinus, crown-root ratio of implant prosthesis will increase. The prognosis of these cases is not good as expected. Purpose : The purpose is to compare stress distribution due to crown-root ratio and effect of splinting between two implants in maxillary molar area under different loads Material and methods: Using ITI($4.1{\times}10$ mm) implant. two finite element models were made(model S: two parallel implants, model A: one of two is 20 degree inclined). Each model was designed in different crown-root ratio(0.7:1, 1:1, 1.25:1) and set cement type gold crown to make it splinted or non-splinted clinical situations. After that, 300 N force was loaded to each model in four ways.(load 1 : middle of occlusal table, load 2 : middle of buccal cusp, load 3 : middle of lingual cusp, load 4 : horizontal load to middle of buccal cusp), and stress distribution was analyzed. Results: On all occasions, stress was concentrated on neck of implant near cortical bone. In the case of inclined implant, stress was increased compared with parallel implants. Under load 1, 2, 3, stress was not increased even when crown-root ratio increases, but under load 4, when crown-root ratio increases, stress also increased. And more stress was concentrated under load 1 than load 2, 3. When crown-root ratio was same, stress under load 1, 2, 3 decreased when splinting, but under load 4, stress did not really decrease. Conclusion: Under vertical load, stress distribution related to crown-root ratio did not change. But under horizontal load, stress increased as crown-root ratio increases. Under vertical load, splinting decreased stress but under horizontal load, effect of splinting was decreased as condition of implant changes for the worse such as increase of crown-root ratio, inclined implant.
Journal of Dental Rehabilitation and Applied Science
/
v.21
no.2
/
pp.169-182
/
2005
The purpose of this study was to compare the stress distribution around the surrounding bone according to the splinted and non-splinted conditions on the finite element models of the two implant crowns with the different vertical bone level. The finite element model was designed with the parallel placement of the two fixtures ($4.0mm{\times}11.5mm$) with reverse buttress thread on the mandibular 1st and 2nd molars. As the bone quality, the inner cancellous bone and the outer 2 mm cortical bone were designed, and the cortical and cancellous bone were assumed to be perfectly bonded to the implant fixture. The splinted model(Model 1) had 2 mm contact surface and the non-splinted model(Model 2) had $8{\mu}m$ gap between two implant crowns. Two group (Splinted and non-splinted) was loaded with 200 N magnitude in the vertical and oblique directions on the loading point position on the central position of the crown, the 2 mm and 4 mm buccal offset point from the central position. Von Mises stress value was recorded and compared in the fixture-bone interface in the bucco-lingual and mesio-distal sections. The results were as follows; 1. In the vertical loading condition of central position, the stress was distributed on the cortical bone and the cancellous bone around the thread of the fixture in the splinted and non-splinted models. In the oblique loading condition, the stress was concentrated toward the cortical bone of the fixture neck, and the neck portion of 2nd molar in the non-splinted model was concentrated higher than that of 1st molar compared to the splinted model. 2. In the 2 mm buccal offset position of the vertical loading compared to the central vertical loading, stress pattern was shifted from apical third portion of the fixture to upper third portion of that. In the oblique loading condition, the stress was distributed over the fixture-bone interface. 3. In the 4 mm buccal offset position of the vertical loading, stress pattern was concentrated on the cortical bone around the buccal side of the fixture thread and shifted from apical third portion of the fixture to upper third portion of that in the splinted and non-splinted models. In the oblique loading, stresses pattern was distributed to the outer position of the neck portion of the fixture thread on the mesio-distal section in the splinted and non-splinted models. Above the results, it was concluded that the direction of loading condition was a key factor to effect the pattern and magnitude of stress over the surrounding bone of the fixture under the vertical and oblique loading conditions, although the type with or without proximal contact did not effect to the stress distribution.
Kim, Sang-Soo;Ahn, Mi-Ra;Lee, Won-Hyuk;Jung, Heui-Seung;Shin, Im-Hee;Sohn, Dong-Seok
Journal of the Korean Association of Oral and Maxillofacial Surgeons
/
v.35
no.5
/
pp.361-366
/
2009
Purpose: The purpose of this retrospective report was to analyze long-term survival rate of sintered porous-surfaced dental implant ($Endopore^{(R)}$ Dental Implant system, Innova Corporation, Toronto, ON, Canada). Methods: 61 partially edentulous patients were received a total of 127 Endopore dental implants in the maxilla. Of the 127 implants, 24 implants were restored with individual (ie, non-splinted) crowns, while 103 implants were splinted to other implants. Medical records and radiographs were evaluated and analyzed by the cumulative survival rate, location of implants, implants length and diameter, crown/implant ratio and whether the implant was splinted. Chi squire test was used statistically. Result: Of the 127 implants, 8 implants (6.3%) were removed and and cumulative survival rate was 93.7%. Conclusion: Endopore implants showed satisfactory results after up to 8 years function periods in the edentulous posterior maxilla.
PURPOSE. The aim of this study was to compare the efficacies of two-implant splinting (2-IS) and single-implant restoration (1-IR) in the first and second molar regions over a mean functional loading period (FLP) of 40 months, and to propose the appropriate clinical considerations for the splinting technique. MATERIALS AND METHODS. The following clinical factors were examined in the 1-IR and 2-IS groups based on the total hospital records of the patients: sex, mean age, implant location, FLP, bone grafting, clinical crown-implant ratio, crown height space, and horizontal distance. The mechanical complications [i.e., screw loosening (SL), screw fracture, crown fracture, and repeated SL] and biological complications [i.e., peri-implant mucositis (PM) and peri-implantitis (PI)] were also evaluated for each patient. In analysis of two groups, the chi-square test and Student's t-test were used to identify the relationship between clinical factors and complication rates. The optimal cutoff value for the FLP based on complications was evaluated using receiver operating characteristics analysis. RESULTS. In total, 234 patients with 408 implants that had been placed during 2005 - 2014 were investigated. The incident rates of SL (P<.001), PM (P=.002), and PI (P=.046) differed significantly between the 1-IR and 2-IS groups. The FLP was the only meaningful clinical factor for mechanical and biological complication rates in 2-IS. CONCLUSION. The mechanical complication rates were lower for 2-IS than for 1-IR, while the biological complication rates were higher for 2-IS. FLP of 39.80 and 46.57 months were the reference follow-up periods for preventing biological and mechanical complications, respectively.
Statement of problem: Several prosthetic options are available for the restoration of multiple adjacent implants. A passively fitting prosthesis has been considered a prerequisite for the success and maintenance of osseointegration. Passivity is a particular concern with multiple implants because of documented inaccuracies in the casting and soldering process. One way to avoid this problem is to restore the implants individually, however, the restorations of individual adjacent impants requires careful adjustment of interproximal contacts. Purpose: The purpose of this study was to compare the stress distribution pattern and amount surrounding Bicon implants with individual crowns and splinted restorations. Material and method: A photoelastic model of a human partially edentulous left mandible with 3 Bicon implants($4{\times}11mm$) was fabricated. For non-splinted restorations, individual crowns were fabricated on 3 abutments ($4{\times}0.65mm,\;0^{\circ}$, 2.0 mm post, Bicon Inc., Boston, USA) After the units were cemented, 4 levels of interproximal contact tightness were evaluated: open, ideal ($8{\mu}m$ shim stock drags without tearing), medium($40{\mu}m)$), and heavy($80{\mu}m$). Splinted 3-unit fixed partial dentures were fabricated and cemented to the model. Changes in stress distribution under simulated non-loaded and loaded conditions(7.5, 15, 30 lb) were analyzed with a circular polaricope. Results: 1. Stresses were distributed around the entire body of fin in Bicon implants. 2. Splinted restorations were useful for distribution of stress around implants especially with higher loads. 3. By increasing the contact tightness between the individually restored three implants, the stress increased in the coronal portion of implants. Conclusions: Ideal adjustment of the contact tightness was important to reduce the stresses around individually restored Bicon implants.
PURPOSE. This study compared the accuracy of an abutment-framework (A-F) taken with open tray impression technique combining cement-on crown abutments, a metal framework and resin cement to closed tray and resin-splinted open tray impression techniques for the 3-implant definitive casts. The effect of angulation on the accuracy of these 3 techniques was also evaluated. MATERIAL AND METHODS. Three definitive casts, each with 3 linearly positioned implant analogs at relative angulations 0, 30, and 40 degrees, were fabricated with passively fitted corresponding reference frameworks. Ten impressions were made and poured, using each of the 3 techniques on each of the 3 definitive casts. To record the vertical gap between reference frameworks and analogs in duplicate casts, a light microscope with image processing was used. Data were analyzed by two-way analysis of variance and the Tukey test. RESULTS. The open tray techniques showed significantly smaller vertical gaps compare to closed tray technique (P < .05). The closed tray and the resin-splinted open tray technique showed significantly different vertical gaps according to the angulation of implant (P < .05), but the A-F impression technique did not (P > .05). CONCLUSION. The accuracy of the A-F impression technique was superior to that of conventional techniques, and was not affected by the angulation of the implants.
Statement of the problem: Under anatomical limitations on maxillary posterior region, a poor crown-to root ratio acting on dental implants can result in undesirable stress in surrounding bone, which in turn can cause bone defects and eventual failure of implants. Purpose: The purpose is to compare stress distribution due to different crown-root ratio and effect of splinting between natural teeth and implants in maxillary molar area under different loads. Material and methods: Analysis of stress arising supporting bone of the natural teeth and the implant was made with 3-dimensional finite element method. The model simulated naturel teeth was made with 2nd premolar and 1st molar in the maxillary molar region (Model T). The model simulated implants placed on same positions with two parallel implants of Straumann Dental Implant cemented abutment (Model I). Each model was designed in different crown-root ratio (0.7:1, 1:1, 1.25:1) and set cement type gold crown to make it non-splinted or splinted. After that, 300 N force was loaded to each model in five ways (Load 1: middle of occlusal table, Load 2: middle of buccal cusp, Load 3: middle of lingual cusp, Load 4: horizontal load to buccal cusp of anterior abutment only, Load 5: horizontal load to middle of buccal cusp of each abutment), and stress distribution was analyzed. Results and conclusion: On all occasions, stress was concentrated at the cervical region of the implant. Under load 1, 2 and 3, stress was not increased even when crown-root ratio increases, but under load 4 and 5, when crown-root ratio increases, stress also increased. There was difference in stress values between natural teeth and implants when crown-root ratio gradually increases; In case of natural teeth, splinting decreased stress under vertical and horizontal loads. In case of implants, splinting decreased stress under vertical loads 1,2 and 3, but increased maximal stress under loads 2 and 3. Under horizontal loads, splinting decreased stress, however the effect of splinting decreased under load 5 than load 4. Furthermore, the stress was increased, when crown-root ratio is 1.25:1. Clinical implications: This limited finite element study suggests that the stress on supporting bone may be increased under non-axial loads and poor crown-root ratio. Under poor crown-root ratio, excessive stress was generated at the cervical region of the implant, and decreased splinting effect for stress distribution, which can be related to clinical failure.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.