• Title/Summary/Keyword: Implant distribution

Search Result 366, Processing Time 0.027 seconds

A PHOTOELASTIC STRESS ANALYSIS OF FIXED PARTIAL DENTURES WITH BICON IMPLANTS ON MANDIBULAR POSTERIOR AREA (하악구치부에서 Bicon 임플란트에 의해 지지되는 고정성 국소의치의 광탄성 응력분석)

  • Kang, Jong-Un;Kim, Nan-Young;Kim, Yu-Lee;Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.4
    • /
    • pp.412-424
    • /
    • 2004
  • Statement of problem: Several prosthetic options are available for the restoration of multiple adjacent implants. A passively fitting prosthesis has been considered a prerequisite for the success and maintenance of osseointegration. Passivity is a particular concern with multiple implants because of documented inaccuracies in the casting and soldering process. One way to avoid this problem is to restore the implants individually, however, the restorations of individual adjacent impants requires careful adjustment of interproximal contacts. Purpose: The purpose of this study was to compare the stress distribution pattern and amount surrounding Bicon implants with individual crowns and splinted restorations. Material and method: A photoelastic model of a human partially edentulous left mandible with 3 Bicon implants($4{\times}11mm$) was fabricated. For non-splinted restorations, individual crowns were fabricated on 3 abutments ($4{\times}0.65mm,\;0^{\circ}$, 2.0 mm post, Bicon Inc., Boston, USA) After the units were cemented, 4 levels of interproximal contact tightness were evaluated: open, ideal ($8{\mu}m$ shim stock drags without tearing), medium($40{\mu}m)$), and heavy($80{\mu}m$). Splinted 3-unit fixed partial dentures were fabricated and cemented to the model. Changes in stress distribution under simulated non-loaded and loaded conditions(7.5, 15, 30 lb) were analyzed with a circular polaricope. Results: 1. Stresses were distributed around the entire body of fin in Bicon implants. 2. Splinted restorations were useful for distribution of stress around implants especially with higher loads. 3. By increasing the contact tightness between the individually restored three implants, the stress increased in the coronal portion of implants. Conclusions: Ideal adjustment of the contact tightness was important to reduce the stresses around individually restored Bicon implants.

Three dimensional finite element analysis of the fully bone anchored bridge and implant-supported overdenture in edentulous mandible (무치하악에서 임플랜트를 이용한 고정성 및 가철성 보철물의 삼차원 유한요소 분석)

  • Lim, Heon-Song;Cho, In-Ho;Lim, Ju-Hwan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.4
    • /
    • pp.251-276
    • /
    • 2002
  • The purpose of this study was to compare and analyze the stress distribution and displacement of the fully bone anchored bridge and implant-supported overdenture in edentulous mandible on certain conditions such as number of implants, different design of superstructure. Three dimensional analysis was used and nine kinds of models designed for this study. FEM models were created using commercial software[$Rhinoceros^{(R)}$ (Ver. 1.0 Robert McNeel & Associates, USA)], and analyze using commercial software [Cosmos/$Works^{TM}$(Ver. 4.0 Structural Research & Analysis Corp., US A)]. A vertical load and $45^{\circ}$ oblique load of 17kgf were applied at the left 1st. molar. The results were as follows : (1) In the group of OVD, the displacement was reduced as increasing the number of fixture under vertical loading but there was no specific difference in Von Mises stress. Under oblique loading, the displacement was same at the vertical loading but Von Mises stress was reduced in order of OVD-3, OVD-4, OVD-2. But, bending moment reduced according to increasing the number of fixture. (2) In the group of FBAB, under vertical and oblique loading, the magnitude of Von Mises stress and displacement reduced according to increasing the number of fixtures. FBAB-4 and FBAB-5 showed similar score and distribution, but FBAB-6 showed lower value relatively. (3) In cantilever design, the maximum displacement reduced under vertical loading but increased under oblique loading. However, von mises stresses on fixtures increased under vertical and oblique loading. (4) In comparing OVD-group with FBAB-group, FBAB showed low magnitude of displacement in respect of oblique loading. However OVD-group was more stable in respect of stress distribution.

PHOTOELASTIC ANALYSIS OF STRESS INDUCED BY DIFFERENT TYPE ENDOSSEOUS IMPLANTS (골내 임플랜트의 종류에 따른 광탄성 응력 분석)

  • Chung Chae-Heon;Chang Doo-Ik
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.661-678
    • /
    • 1993
  • The purpose of this study was to analyze the stress distribution at supporting bone according to the types of endosseous implants. This investigation evaluated the stress patterns in rectangular photoelastic models produced by four different types of dental implants such as $Br\ddot{a}nemark$, screw type of Steri-Oss, blade type of Steri-Oss, IMZ with IMC and resin tooth using the techniques of quasi-three dimensional photoelasticity. All prostheses were casted in the same nonprecious alloy and were cemented or screwed on their respective implants and abutments. 20 kg of vertical load was applied on the central fossa of casted crown and 16 kg of inclined had was applied on the top third of distal surface of casted crown respectively. The results were as follows : 1. Under the vertical load, screw implants of Steri-Oss and $Br\ddot{a}nemark$ showed increasing stress condition between and around the screw threads along the implant lateral surface and cylindrical implant of IMZ showed the less stress condition along the lateral surface with concentration of stress mostly near the root apex. 2. Under the vertical load, the stress of Steri-Oss blade was distributed uniformly at the alveolar bone under the broad blade. 3. Under the inclined load, the stress concentration of Steri-Oss screw and $Br\ddot{a}nemark$ was developed highly around the mesiocervical bone area on the contralateral side to force application. The stress of $Br\ddot{a}nemark$ with flexible gold glod was more concentrated in the cervical bone area than that of Steri-Oss with stiff screw. 4. Under the inclined load, the stress of Steri-Oss blade broadly was distributed around the mesioceivical bone area and the lower and mesial bone area of the blade. 5. Under the Inclined load, IMZ implant showed the gap between c개wn and fixture due ta deformation of the IMC and IMZ was lower in stress concentration developed around the mesiocervical bone area than $Br\ddot{a}nemark$ and Steri-Oss screw. 6. Under the inclined load, the stress magnitude induced in the mesiocervical bone area of implants was in order of $Br\ddot{a}nemark$, Steri-Oss strew, IMZ and Stsri-Oss blade. 7. Tilting forces as compared to axial forces exerted greater magnitude of stress in the cervical bone area of the implant. 8. In respect of stress distribution, Steri-Oss blade was superior than any other implants and in respect of the stability by horizontal lone, IMB and $Br\ddot{a}nemark$ was inferior than any other implants.

  • PDF

Finite Element Stress Analysis on the Supporting Tissues depending upon the Position of Osseointegrated Implants Supporting Fixed Bridges (고정성 보철물을 지지하는 골유착성 임플란트의 위치에 따른 지지조직에서의 유한요소적 응력분석)

  • Yoon, Dong-Joo;Shin, Sang-Wan;Suh, Kyu-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.1
    • /
    • pp.87-99
    • /
    • 1993
  • Many studies have been reported on the successful replacement of missing teeth with osseointegrated dental Implants. However, little research has been carried out on the bio-mechanical aspect of the stress on the surrounding bone of the free-standing type of dental implant prostheses. This experimental study was aimed to analyze the stress distribution pattern on the supporting tissues depending upon the position of osseointegrated implants supporting fixed bridges. In the cases of unilateral partially edentulous mandible (the 2nd premolar and the 1st and 2nd molars missing), two osseointegrated implants were placed at the 2nd premolar and 2nd molar sites (Model A) , the 1st and 2nd molar sites (Model B, Anterior cantilevered type), the 2nd premolar and 1st molar sites (Model C, Posterior cantilevered type). Chewing forces of dentate patients and denture wearer were applied vertically on the 2nd premolar, the 1st molar, and the 2nd molar of each model. A 3-Unit fixed partial denture was constructed at each model and cantilevered extension parts were involved in Model B and Model C. Two dimensional finite element analysis was undertaken. The commercial software (Super SAP) for IBM 16 bit personal computer was utilized. The results were as follows : 1. The magnitude of applied load influenced on the total value of stresses, but did not in-fluence on the pattern of stress distribution. 2. The magnitude of stress developed from the supporting tissues were in order of Model C,Model A,Model B. 3. High stresses were concentrated on the cervical and apical portion of the implant/bone interface. 4. A difference of the stress magnitude on the implant/bone interface between mesial and distal implant was most prominant in Model C and in order of Model A and Model B. 5. The stresses developed in Model A were evenly distributed throughout both implants. 6. The stresses concentrated on the cervical portion of cantilevered side were higher in the posterior cantilevered type than in the anterior cantilevered type.

  • PDF

Stress Analysis on the Splinted Conditions of the Two Implant Crowns with the Different Vertical Bone Level (치조골 높이가 다른 2개 임플란트 금관의 고정연결 조건에 따른 응력분석)

  • Jeon, Chang-Sik;Jeong, Sin-Young;Kang, Dong-Wan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.2
    • /
    • pp.169-182
    • /
    • 2005
  • The purpose of this study was to compare the stress distribution around the surrounding bone according to the splinted and non-splinted conditions on the finite element models of the two implant crowns with the different vertical bone level. The finite element model was designed with the parallel placement of the two fixtures ($4.0mm{\times}11.5mm$) with reverse buttress thread on the mandibular 1st and 2nd molars. As the bone quality, the inner cancellous bone and the outer 2 mm cortical bone were designed, and the cortical and cancellous bone were assumed to be perfectly bonded to the implant fixture. The splinted model(Model 1) had 2 mm contact surface and the non-splinted model(Model 2) had $8{\mu}m$ gap between two implant crowns. Two group (Splinted and non-splinted) was loaded with 200 N magnitude in the vertical and oblique directions on the loading point position on the central position of the crown, the 2 mm and 4 mm buccal offset point from the central position. Von Mises stress value was recorded and compared in the fixture-bone interface in the bucco-lingual and mesio-distal sections. The results were as follows; 1. In the vertical loading condition of central position, the stress was distributed on the cortical bone and the cancellous bone around the thread of the fixture in the splinted and non-splinted models. In the oblique loading condition, the stress was concentrated toward the cortical bone of the fixture neck, and the neck portion of 2nd molar in the non-splinted model was concentrated higher than that of 1st molar compared to the splinted model. 2. In the 2 mm buccal offset position of the vertical loading compared to the central vertical loading, stress pattern was shifted from apical third portion of the fixture to upper third portion of that. In the oblique loading condition, the stress was distributed over the fixture-bone interface. 3. In the 4 mm buccal offset position of the vertical loading, stress pattern was concentrated on the cortical bone around the buccal side of the fixture thread and shifted from apical third portion of the fixture to upper third portion of that in the splinted and non-splinted models. In the oblique loading, stresses pattern was distributed to the outer position of the neck portion of the fixture thread on the mesio-distal section in the splinted and non-splinted models. Above the results, it was concluded that the direction of loading condition was a key factor to effect the pattern and magnitude of stress over the surrounding bone of the fixture under the vertical and oblique loading conditions, although the type with or without proximal contact did not effect to the stress distribution.

A Numerical Study on the Response of the Tibial Component in Total Knee Arthroplasty to Longitudinal Impact (인공무릎관절 전치환술에 있어 축방향 충격에 의한 Tibial Component의 응답 특성 분석 연구)

  • 조용균;조철형;최재봉;이태수;최귀원
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.503-511
    • /
    • 1998
  • In this study, the stress distribution for different tibial components was observed In order to Investigate the load transfer and potential failure mechanism of the tibial components subjected to dynamic impact loading and also to evacuate the effect of bone-implant bonding conditions on the implant system. The 3-dimensional finite element models included an intact tibia, cemented metal-backed tibial component, uncemented metal-blocked tibial component, cemented all-polyethylene tibial component, and metal-backed component with a debonded bone/stem interface. The results showed that the cemented metal-hocked component Induced slightly higher peak stress at stem tip than the uncemented component. The peak stress of the all-polyethylene tibia1 component at stem trip showed about half thats of metal-backed tibial components. The all-polyethylene component showed a similar dynamic response to intact tibia. In case of debonded bone/stem interface, the peak stress below the metal tray was three times Higher than that of the fully bonded interface and unstable stress distribution at the stem tip was observed with time, which causes another adverse bone apposition and implant loosening. Thus, the all-polyethylene tibial component bonded fully to the surrounding bone might be most desirable system under an impact loading.

  • PDF

REMOVAL TORQUE AND BONE FORMATION OF ORTHODONTIC MINISCREW IMPLANT (교정용 미니스크류 임플랜트의 제거회전력 및 골형성에 관한 연굴)

  • Yun, Young-Kuk;Ryu, Jae-Jun;Suh, Kyu-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.492-505
    • /
    • 2007
  • Statement of problem: An orthodontic miniscrew implant has been used as a skeletal anchorage for orthodontic treatment. However, any relation among the influence of the cortical bone, morphologic differences of orthodontic miniscrew implants and new bone formation hasn't been made clear yet. Purpose: The purpose of this study was to evaluate whether the orthodontic miniscrew implant could work as an intraoral skeletal anchorage immediately and stably for orthodontic treatment after insertion of it. Material and methods: Two types of orthodontic miniscrew implants were used in this experiment; tapered type and straight type. One hundred and sixty eight orthodontic miniscrew implants were inserted into the tibiae of 21 rabbits and sacrificed on 3, 7, 11, 14, 21 and 28days later after insertion of them to study removal torque values and histologic and histomorphometric analyses. Results: The results were as follows. 1. The removal torque values of the tapered type were higher than those of the straight type in all groups(p<0.05). 2. There wasn't any distinguishing differences between the tapered type and the straight type about the new bone formation percentage. 3. The removal torque values for both the tapered type and the straight type were gradually decreased at early stages of the test but started to increase at the 7 days group of the straight type and the 11 days group of the tapered type. 4. New bone formation percentage was increased gradually for both the tapered and the straight types as time passed(p<0.05). 5. It was found that the tapered type showed lower values in the cortical bone about both the maximum equilibratory stress distribution and the maximum principal stress distribution than the straight type in linear finite elements analysis. Conclusion: According to the research, the removal torque values were decreased at 7 days group of the tapered type and 11 days group of the straight type after the insertion of the orthodontic miniscrew implants in tibiae of rabbits. Considering the human bone activity, it is better to apply the orthodontic force $3{\sim}4$ weeks later than to apply it immediately after the insertion of orthodontic miniscrew implants. Considering that general orthodontic force is about $250{\sim}500$ grams, the tapered type can be worked as a stable skeletal anchor age in an orthodontic treatment even if the orthodontic force is applied on it immediately after the insertion of it.

THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF $BR{\AA}NEMARK\;NOVUM^{(R)}$ IMMEDIATE IMPLANT PROSTHODONTIC PROTOCOL ($Br{\aa}nemark\;Novum^{(R)}$ 즉시 임플랜트 보철 수복 방법에 관한 삼차원 유한요소 분석적 연구)

  • Kim Woo-Young;Kim Yung-Soo;Jang Kyung-Soo;Kim Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.5
    • /
    • pp.463-476
    • /
    • 2001
  • Since the treatment of edentulous patients with osseointegrated implant was first introduced more than 30 years ago, implant therapy has become one of the most important dental treatment modalities today. Based on the previous experience and knowledge, $Br{\aa}nemark\;Novum^{(R)}$ protocol was introduced with the concept of simplifying surgical and prosthetic technique and reducing healing time recently. This protocol recommends the installation of three 5mm wide diameter futures in anterior mandible and the prefabricated titanium bars for superstructure fabrication. This study was designed to analyze the stress distribution at fixture and superstructure area according to changes of fixture number, diameter and superstructure materials. Four 3-dimensional finite element models were fabricated. Model 1 - 5 standard fixtures (13mm long and 3.75mm in diameter) & superstructure consisted of type IV gold alloy and resin Model 2- 3 wide diameter fixtures (13mm long and 5.0mm in diameter) & superstructure consisted of type IV gold alloy and resin Model 3-3 wide diameter fixtures (13mm long and 5.0mm in diameter) & superstructure consisted of titanium and resin Model 4-3 wide diameter fixtures (13mm long and 5.0mm in diameter) & superstructure consisted of titanium and porcelain A 150N occlusal force was applied on the 1st molar of each model in 3 directions - vertical($90^{\circ}$), horizontal($0^{\circ}$) and oblique($120^{\circ}$). After analyzing the stresses and displacements, following results were obtained. 1. There were no significant difference in stress distribution among experimental models. 2. Model 2, 3, 4 showed less amount of compressive stress than that of model 1. However, tensile stress was similar. 3. Veneer material with a high modulus of elasticity demonstrated less stress accumulation in the superstructure. Within the limites of this study, $Br{\aa}nemark\;Novum^{(R)}$ protocol demonstrated comparable biomechanical properties to conventional protocol.

  • PDF

Finite Element Stress Analysis of Bone Tissue According to the Implant Connection Type (2종의 임플란트 내부결합구조체에 따른 치조골상 유한요소응력 분석)

  • Byun, Ook;Jung, Da-Un;Han, In-Hae;Kim, Seong-Ryang;Lee, Chang-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.3
    • /
    • pp.259-271
    • /
    • 2013
  • The purpose of this study was to make the stress distribution produced by simulated different load under two types of internal connection implant system (stepped and tapered type) by means of 3D finite element analysis, The finite element model was designed with the parallel placement of the one fixtures ($4.0mm{\times}11.5mm$) with reverse buttress thread on the mandibular 1st molar. Two models were loaded with 200 N magnitude in the vertical direction on the central position of the crown, the 1.5 mm and 3 mm buccal offset point from the central position of the fixture. The oblique load was applied at the angle of $30^{\circ}$ on the crown surface. Von Mises stress value was recorded and compared in the fixture-bone interface in the bucco-lingual dimension. The results were as follows; 1. The loading conditions of two internal connection implant systems (stepped and tapered type) were the main factor affecting the equivalent bone strain, followed by the type of internal connections. 2. The stepped model had more mechanical stability with the reduced max. stress compared to $11^{\circ}$ tapered models under the distributed oblique loading. 3. The more the contact of implant-abutment interface to the inner wall of implant fixture, the less stress concentration was reduced.