• 제목/요약/키워드: Implant distribution

검색결과 366건 처리시간 0.025초

임플랜트와 지대주 간 내측연결 시스템에서 Friction Fit와 Slip Fit에 따른 유한요소 응력분석 (Finite Element Stress Analysis of Implant Prosthesis According to Friction Fit or Slip Fit of Internal Connection System between Implant and Abutment)

  • 장두익;정승미;정재헌
    • 구강회복응용과학지
    • /
    • 제21권2호
    • /
    • pp.113-132
    • /
    • 2005
  • The purpose of this study was to assess the stress-induced pattern at the supporting bone, the implant fixture, the abutment and the abutment screw according to a friction-fit joint (Astra; Model 1) or slip- fit joint (Frialit-2; Model 2) in the internal connection system under vertical and inclined loading using finite element analysis. In conclusion, in the internal connection system of the implant and the abutment connection methods, the stress-induced pattern at the supporting bone, the implant fixture, the abutment and the abutment screw according to the abutment connection form had difference among them, and the stress distribution pattern usually had a widely distributed tendency along the inner surface of the implant fixture contacting the abutment post. The magnitude of the stress distributed in the supporting bone, the implant fixture, the abutment and the abutment screw was higher in the friction-fit joint than in the slip-fit joint. But it is considered that the further study is necessary about how this difference in the magnitude of the stress have an effect on the practical clinic.

STRESS ANALYSIS WITH NONLINEAR MODELLING OF THE LOAD TRANSFER CHARACTERISTICS ACROSS THE OSSEOINTEGRATED INTERFACES OF DENTAL IMPLANT

  • Lee Seung-Hwan;Jo Kwang-Hun
    • 대한치과보철학회지
    • /
    • 제42권3호
    • /
    • pp.267-279
    • /
    • 2004
  • A modelling scheme for the stress analysis taking into account load transfer characteristics of the osseointegrated interfaces between dental implant and surrounding alveolar bone was investigated. Main aim was to develop a more realistic simulation methodology for the load transfer at the interfaces than the prefect bonding assumption at the interfaces which might end up the reduced level in the stress result. In the present study, characteristics of osseointegrated bone/implant interfaces was modelled with material nonlinearity assumption. Bones at the interface were given different stiffness properties as functions of stresses. Six different models, i.e. tens0, tens20, tens40, tens60, tens80, and tens100 of which the tensile moduli of the bones forming the bone/implant interfaces were specified from 0, 20, 40, 60, 80, and 100 percents, respectively, of the compressive modulus were analysed. Comparisons between each model were made to study the effect of the tensile load carrying abilities, i.e. the effectivity of load transfer, of interfacial bones on the stress distribution. Results of the present study showed significant differences in the bone stresses across the interfaces. The peak stresses, however, were virtually the same regardless of the difference in the effectivity of load transfer, indicating the conventional linear modelling scheme which assumes perfect bonding at the bone/implant interface can be used without causing significant errors in the stress levels.

치조골 높이가 다른 임프란트 주위 지지골 응력분석 (Stress Analysis on the Supporting Bone around the Implant According to the Vertical Bone Level)

  • 부수붕;정제옥;이승훈;김창현;이승호
    • 구강회복응용과학지
    • /
    • 제23권1호
    • /
    • pp.55-68
    • /
    • 2007
  • The purpose of this study was to analyze the distribution of stress in the surrounding bone around implant placed in the first and second molar region. Two different three-dimensional finite element model were designed according to vertical bone level around fixture ($4.0mm{\times}11.5mm$) on the second molar region. A mandibular segment containing two implant-abutments and a two-unit bridge system was molded as a cancellous core surrounded by a 2mm cortical layer. The mesial and distal section planes of the model were not covered by cortical bone and were constrained in all directions at the nodes. Two vertical loads and oblique loads of 200 N were applied at the center of occlusal surface (load A) or at a position of 2mm apart buccally from the center (load B). Von-Mises stresses were analyzed in the supporting bone. The results were as follows; 1. With the vertical load at the center of occlusal surface, the stress pattern on the cortical and cancellous bones around the implant on model 1 and 2 was changed, while the stress pattern on the cancellous bone with oblique load was not. 2. With the vertical load at the center of occlusal surface, the maximum von-Mises stress appeared in the outer distal side of the cortical bone on Model 1 and 2, while the maximum von-Mises stress appeared in the distal and lingual distal side of the cortical bone with oblique load. 3. With the vertical load at a position of 2 mm apart buccally from the center, there was the distribution of stress on the upper portion of the implant-bone interface and the cortical bone except for the cancellous bone, while there was a distribution of stress on the cancellous bones at the apical and lingual sides around the fixture and on the cortical bone with oblique load. 4. With the changes of the supporting bone on the second molar area, the stress pattern on the upper part of the cortical bone between two implants was changed, while the stress pattern on the cancellous bone was not. The results of this study suggest that establishing the optimum occlusal contact considering the direction and position of the load from the standpoint of stress distribution of surrounding bone will be clinically useful.

임플란트 나사선 경사각과 식립 각도에 따른 3차원 유한요소 응력분석 (Three-dimensional finite element analysis of stress distribution for different implant thread slope and implant angulation)

  • 서영훈;임현필;윤귀덕;윤숙자;방몽숙
    • 대한치과보철학회지
    • /
    • 제51권1호
    • /
    • pp.1-10
    • /
    • 2013
  • 연구 목적: 임플란트 나사선 경사각이 치조골의 응력분포에 미치는 영향을 검토하여 어떤 임플란트가 응력분산에 유리한 지 알아보고자 하였다. 연구 재료 및 방법: 피치는 0.8 mm로 일정하게 하고 나사선의 줄(thread) 수를 다르게 하여 나사선 경사각의 변화를 준 1줄 나사선 임플란트(single thread type: 경사각 $3.8^{\circ}$)와 2줄 나사선 임플란트(double thread type: 경사각 $7.7^{\circ}$) 그리고 3줄 나사선 임플란트(triple thread type: 경사각 $11.5^{\circ}$)의 세 가지 모델을 통해 3차원 유한요소 응력분석을 시행하였다. 임플란트가 치조골의 치아 장축에 대하여 $0^{\circ}$, $10^{\circ}$, $15^{\circ}$ 경사지게 식립된 것으로 가정하여 9 가지 모델을 만들었다. 200 N의 수직 방향의 하중과, 200 N의 임의의 $15^{\circ}$ 경사 하중을 가한 경우에 임플란트와 치조골에서 발생된 응력분포를 3차원 유한요소법으로 분석하였다. 결과:1. 임플란트의 경사 식립 각도가 클수록 치조골과 임플란트의 등가응력(von-Mises stress)과 최대주응력이 높게 나타났다. 2. 수직하중보다 경사하중을 가할 경우 치조골과 임플란트의 등가응력과 최대주응력이 높게 나타났다. 3. 임플란트의 나사선 줄 수가 증가할수록 응력분산 효과가 커서 등가응력과 최대주응력의 크기가 감소되었다. 4. 치조골에 작용하는 최대주응력의 크기는 수직하중 시에나 경사하중 시에 3줄 나사선을 가진 임플란트가 가장 작고 다음으로 2줄 또는 1줄 나사선의 순으로 나타나 3줄 나사선의 경우가 가장 우수한 결과를 보였다. 결론: 이상의 결과는 3줄 나사선 임플란트가 1줄 및 2줄 나사선 임틀란트보다 응력분산 효과 면에서 우수하며, $10^{\circ}$ 이상 경사지게 식립된 경우에라도 나사선 경사각이 커지면서 줄 수가 증가할수록 치조골에서 발생하는 최대 주응력 값이 감소하므로 임플란트 나사선 줄 수와 경사각을 최적화함으로써 임플란트 응력분산에 도움이 될 수 있음을 시사하였다.

Stress analysis of mandibular implant overdenture with locator and bar/clip attachment: Comparative study with differences in the denture base length

  • Yoo, Jin Suk;Kwon, Kung-Rock;Noh, Kwantae;Lee, Hyeonjong;Paek, Janghyun
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권3호
    • /
    • pp.143-151
    • /
    • 2017
  • PURPOSE. The design of the attachment must provide an optimum stress distribution around the implant. In this study, for implant overdentures with a bar/clip attachment or a locator attachment, the stress transmitted to the implant in accordance with the change in the denture base length and the vertical pressure was measured and analyzed. MATERIALS AND METHODS. Test model was created with epoxy resin. The strain gauges made a tight contact with implant surfaces. A universal testing machine was used to exert a vertical pressure on the mandibular implant overdenture and the strain rate of the implants was measured. RESULTS. Means and standard deviations of the maximum micro-deformation rates were determined. 1) Locator attachment: The implants on the working side generally showed higher strain than those on the non-working side. Tensile force was observed on the mesial surface of the implant on the working side, and the compressive force was applied to the buccal surface and on the surfaces of the implant on the non-working side. 2) Bar/clip attachment: The implants on the both non-working and working sides showed high strain; all surfaces except the mesial surface of the implant on the non-working side showed a compressive force. CONCLUSION. To minimize the strain on implants in mandibular implant overdentures, the attachment of the implant should be carefully selected and the denture base should be extended as much as possible.

Assessment of demographic and clinical data related to dental implants in a group of Turkish patients treated at a university clinic

  • Bural, Canan;Bilhan, Hakan;Cilingir, Altug;Geckili, Onur
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권3호
    • /
    • pp.351-358
    • /
    • 2013
  • PURPOSE. This retrospective study analyzed the distribution of the dental implants with regards to age and gender of the patients and type of indication for the implant therapy, as well as the location, dimension and type of the implants. MATERIALS AND METHODS. The data of demographics (age and gender), type of indication for implant therapy, anatomical location, dimensions (length and diameter) and type (bone and tissue level) of 1616 implants were recorded from patient charts between January 2000 and January 2010. Descriptive statistics were analyzed using a chi-squared test for demographic parameters, type of indication, tooth position, anatomical location, implant dimensions and type (${\alpha}$=.05). RESULTS. The patient pool comprised of 350 women and 266 men, with a mean age of $52.12{\pm}13.79$ years. The difference in n% of the implants of the age groups was statistically significant between the types of indications. The difference in the position of the implants was statistically significant between the n% of the implants of all age groups. Gender did not significantly vary, except that the diameter of the implants was significantly higher for the standard diameter implants in males. The difference between the implant positions was statistically significant when considered according to indication. The relationship between implant length and anatomical location was statistically significant. CONCLUSION. The indication for dental implant use is age dependent and the type and size of the implant seems to be strongly related to the location of the implant.

Three-dimensional finite element analysis of platform switched implant

  • Moon, Se-Young;Lim, Young-Jun;Kim, Myung-Joo;Kwon, Ho-Beom
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권1호
    • /
    • pp.31-37
    • /
    • 2017
  • PURPOSE. The purpose of this study was to analyze the influence of the platform switching concept on an implant system and peri-implant bone using three-dimensional finite element analysis. MATERIALS AND METHODS. Two three-dimensional finite element models for wide platform and platform switching were created. In the wide platform model, a wide platform abutment was connected to a wide platform implant. In the platform switching model, the wide platform abutment of the wide platform model was replaced by a regular platform abutment. A contact condition was set between the implant components. A vertical load of 300 N was applied to the crown. The maximum von Mises stress values and displacements of the two models were compared to analyze the biomechanical behavior of the models. RESULTS. In the two models, the stress was mainly concentrated at the bottom of the abutment and the top surface of the implant in both models. However, the von Mises stress values were much higher in the platform switching model in most of the components, except for the bone. The highest von Mises values and stress distribution pattern of the bone were similar in the two models. The components of the platform switching model showed greater displacement than those of the wide platform model. CONCLUSION. Due to the stress concentration generated in the implant and the prosthodontic components of the platform switched implant, the mechanical complications might occur when platform switching concept is used.

수종의 임플랜트 시스템에 따른 유한요소법적 응력분석에 관한 연구 (A STUDY ON THE VARIOUS IMPLANT SYSTEMS USING THE FINITE ELEMENT STRESS ANALYSIS)

  • 유성현;박원희;박주진;이영수
    • 대한치과보철학회지
    • /
    • 제44권2호
    • /
    • pp.207-216
    • /
    • 2006
  • Statement of Problem: To conduct a successful function of implant prosthesis in oral cavity for a long time, it is important that not only structure materials must have the biocompatibility, but also the prosthesis must be designed for the stress, which is occurred in occlusion, to scatter adequately within the limitation of alveolar bone around implant and bio-capacity of load support. Now implant which is used in clinical part has a very various shapes, recently the fixture that has tapered form of internal connection is often selected. However the stress analysis of fixtures still requires more studies. Purpose: The purpose of this study is to stress analysis of the implant prosthesis according to the different implant systems using finite element method. Material and methods: This study we make the finite element models that three type implant fixture ; $Br{\aa}nemark$, Camlog, Frialit-2 were placed in the area of mandibular first premolar and prosthesis fabricated, which we compared with stress distribution using the finite element analysis under two loading condition. Conclusion: The conclusions were as follows: 1. In all implant system, oblique loading of maximum Von mises stress of implant, alveolar bone and crown is higher than vertical loading of those. 2. Regardless of loading conditions and the type of system. cortical bone which contacts with implant fixture top area has high stress, and cancellous bone has a little stress. 3. Under the vertical loading, maximum Von mises stress of $Br{\aa}nemark$ system with external connection type and tapered form is lower than Camlog and Frialit-2 system with internal connection type and tapered form, but under oblique loading Camlog and Frialit-2 system is lower than $Br{\aa}nemark$ system.

골유착성 임플랜트 보철물 장착시 하악골의 탄성변형 및 응력분포에 관한 삼차원 유한요소법적 연구 (A STUDY ON THE ELASTIC DEFORMATION AND STRESS DISTRIBUTION OF THE MANDIBLE WITH OSSEOINTEGRATED IMPLANT PROSTHESES USING THREE DIMENSIONAL FINITE ELEMENT ANALYSIS METHOD)

  • 김용호;김영수;김창회
    • 대한치과보철학회지
    • /
    • 제36권2호
    • /
    • pp.203-244
    • /
    • 1998
  • The human mandible is always under the condition of loading by the various forces extorted by the attached muscles. The loading is an important condition of the stomatognathic system. This condition is composed of the direction and amount of forces of the masticatory muscles, which are controlled by the neuromuscular system, and always influenced by the movement of both opening and closing. Mandible is a strong foundation for the teeth or various prostheses, nevetheless it is a elastic body which accompanies deformation by the external forces on it. The elastic properties of the mandible is influenced by the various procedures such as conventional restorative treatments, osseointegrated implant treatments, reconstructive surgical procedures and so forth. Among the treatments the osseointegrated implant has no periodontal ligaments, which exist around the natural teeth to allow physiologic mobility in the alveolar socket. And so around the osseointegrated implant, there is almost no damping effect during the transmission of occlusal stress and displacements. If the osseointegrated implants are connected by the superstructure for the stabilization and effective distribution of occlusal stresses, the elastic properties of mandible is restricted according to the extent of 'splinting' by the superstructure and implants. To investigate the change of elastic behaviour of the mandible which has osseointegrated implant prosthesis of various numbers of implant installment and span of superstructre, a three dimensional finite element model was developed and analyzed with conditions mentioned above. The conclusions are as follows : 1. The displacements are primarily developed at the area of muscle attachment and distributed all around the mandible according to the various properties of bone. 2. The segmentation in the superstructure has few influence on the distribution of stress and displacement. 3. In the load case of ICP, the concentration of tensional stress was observed at the anterior portion of the ramus($9.22E+6N/m^2$) and at the lingual portion of the symphysis menti($8.36E+6N/m^2$). 4. In the load case of INC, the concentration of tensional stress was observed at the anterior portion of the ramus($9.90E+6N/m^2$) and the concentration of tensional stress was observed at the lingual portion of the symphysis menti($2.38E+6N/m^2$)). 5. In the load case of UTCP, the relatively high concentration of tensional stress($3.66E+7N/m^2$) was observed at the internal surface of the condylar neck.

  • PDF

하악 구치부에서 임플란트 고정체와 지대주의 협설 기울기에 따른 응력분포에 관한 삼차원 유한요소 분석 (Three Dimensional Finite Element Analysis on Stress Distribution According to the Bucco-lingual Inclination of the Implant Fixture and Abutment in the Mandibular Posterior Region)

  • 이현숙;김지연;김예미;김명래;김선종
    • 구강회복응용과학지
    • /
    • 제27권4호
    • /
    • pp.371-392
    • /
    • 2011
  • 본 연구는 임플란트의 지대주와 고정체의 식립 기울기 변화에 따른 교합력의 응력 분산을 비교 분석하고자 하였다. 치아 장축에 평행하게 식립한 임플란트 위에 직선적 지대주를 체결한 것을 기준 모델로 하여, $15^{\circ}$, $25^{\circ}$ 설측 경사진 지대주를 체결한 모델 2종류, 고정체를 $15^{\circ}$, $25^{\circ}$ 설측 경사 식립 후 동일 각도의 협측 경사의 지대주를 체결한 모델 2종류, 총 5개의 연구 모델에 각각 수직하중과 경사하중을 부가하여 나타난 응력분포를 3차원 유한요소법(finite element analysis)를 이용하여 분석하였다. 연구 결과, 지대주와 고정체의 식립 기울기가 증가할수록 복합하중에서 임플란트와 주위조직의 응력은 증가하였다. 다만 하중의 위치와 종류에 따라 응력의 변화가 모델에 따라 부분적으로 다르게 나타나기도 했다. 이는 응력이 하중의 작용선과 임플란트 고정체의 중심선과의 거리인 수평적 편심부하(horizontal offset)가 변화한 결과이며, 편심부하가 증가할수록 응력도 증가하는 결과를 보였다.