• Title/Summary/Keyword: Implant connection system

Search Result 67, Processing Time 0.024 seconds

External vs internal connection implant system (External vs internal implant : 각각의 장점과 고려사항)

  • Seong, Dong-Jae;Hong, Seoung-Jin;Ha, Seung-Ryong
    • The Journal of the Korean dental association
    • /
    • v.54 no.3
    • /
    • pp.184-190
    • /
    • 2016
  • The osseointegration of titanium implants has been examined over the past 50 years. Many implant systems have been introduced and have become popular to the implant dentistry. The designs of the connection between implant fixture and abutment are divided into external vs internal connection. From beginning, the $Br{\aa}nemark$ system was characterized by an external hexagon. Internal connection has been developed to reduce stress transferred to the bone. These differences may have impact on the clinical procedures and protocols, laboratory and components costs, and incidence of complications. Therefore, the clinician has to know the different biomechanical features and understand their implications to produce successful implant-supported prosthesis with an external or an internal connection system.

  • PDF

THE INFLUENCE OF IMPLANT FIXTURE-ABUTMENT CONNECTION DESIGN ON SCREW LOOSENING (임플랜트 지대주에 따른 나사 풀림의 연구)

  • Mun Yang-Suk;Park Sang-Won;Vang Mong-Sook;Yang Hong-So;Park Ha-Ok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.174-184
    • /
    • 2006
  • Purpose: Current trend in implant dentistry is changing from external connection to internal connection. To evaluate the splinting of external and internal connection implant on screw loosening, 2-units prosthesis was fabricated with BioPlant $System^(R)$ of external connection type and Lifecore STAGE-1 Single Stage Implant $System^(R)$ of internal connection type. Material and Method: Experimental group is classified into three groups. 1) $G_1-EE$: 2-units prosthesis was fabricated with two Bioplant $System^(R)$ of external connection type. 2) $G_1-EI$: 2-units prosthesis was fabricated with one BioPlant $System^(R)$ of external connection type and one Lifecore STAGE-1 Single Stage Implant $System^(R)$ of internal connection type. 3) $G_1-II$: 2-units prosthesis was fabricated with two Lifecore STAGE-1 Single Stage Implant $System^(R)$ of internal connection type. In fabricating 2-units prosthesis, two hexed abutments are recommended when two implants are installed parallel, otherwise one hexed abutment is used on major occlusal force area and one nonhexed abutment is used on the other area. Since it is rare to find two implants being parallel, it is hard to fabricate prosthesis with passive adaptation using two hexed abutments. It is much more difficult to acquire passive adaptation when using hex abutment compared to nonhex abutment. To evaluate the influence of hexed and nonhexed abutment on screw loosening, 2-units prosthesis was fabricated with hexed and nonhexed abutment. Experimental group is classified into three groups. 1) $G_2-HH$: 2-units prosthesis was fabricated with two hexed abutments. 2) $G_2-HN$: 2-units prosthesis was fabricated with one hexed abutment and one nonhexed abutment. 3) $G_2-NN$: 2-units prosthesis was fabricated with two nonhexed abutments. Result: The results of comparing the detorque value after loading on a each prosthesis periodically are as follows. 1. In splinting group of external and internal connection implant, $G_1-II$ group demonstrated the biggest detorque value, followed by $G_1-EI$ group and $G_1-EE$ group. 2. There is no notable significance between external connection implant of $G_1-EI$ group and $G_1-EE$ group and also no significance between internal connection implant of $G_1-EI$ group and $G_1-II$ group. 3. $G_2-HH$ group showed higher detorque value than $G_2-HN\;and\;G_2-NN$ group. From the results, we can concluded that using both external connection and internal connection implant together is clinically acceptable and in order to acquire a good passive adaptation in fabricating 2-units implant prosthesis we can use two nonhexed abutments.

FIT OF FIXTURE/ABUTMENT/SCREW INTERFACES OF INTERNAL CONNECTION IMPLANT SYSTEM

  • Kim, Jin-Sup;Kim, Hee-Jung;Chung, Chae-Heon;Baek, Dae-Hwa
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.3
    • /
    • pp.338-351
    • /
    • 2005
  • Statement of problem. Accurate fit between the implant components is important because the misfit of the implant components results in frequent screw loosening, irreversible screw fracture, plaque accumulation, poor soft tissue reaction, and destruction of osseointegration. Purpose. This study is to evaluate the machining accuracy and consistency of the implant fixture/ abutment/screw interfaces of the internal connection system by using a Stereoscopic Zoom microscope and FE-SEM(field emission scanning electron microscope) Materials and methods. The implant systems selected in this study were internal connection type implants from AVANA(Osstem^{\circledR}), Bioplant(Cowell-Medi^{\circledR}), Dio(DIO^{\circledR}), Neoplant(Neobiotech 􀋓), Implantium(Dentium􀋓)systems. Each group was acquired 2 fixtures at random. Two piece type abutment and one piece type abutment for use with each implant system were acquired. Screw were respectively used to hold a two piece type abutment to a implant fixture. The implant fixtures were perpendiculary mounted in acrylic resin block. Each two piece abutment was secured to the implant fixture by screw and one piece abutment also secured to the implant fixture. Abutment/fixture assembly were mounted in liquid unsaturated polyester. All samples were cross-sectioned with grinder-polisher unit. Finally all specimens were analysed the fit between implant fixture/abutment/screw interfaces Results and conclusions. 1. Implant fixture/abutment/screw connection interfaces of internal connection systems made in Korea were in good condition. 2. The results of the above study showed that materials and mechanical properties and quality of milling differed depending on their manufacturing companies.

Finite Element Stress Analysis of Implant Prosthesis According to Friction Fit or Slip Fit of Internal Connection System between Implant and Abutment (임플랜트와 지대주 간 내측연결 시스템에서 Friction Fit와 Slip Fit에 따른 유한요소 응력분석)

  • Jang, Doo-Ik;Jeong, Seung-Mi;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.2
    • /
    • pp.113-132
    • /
    • 2005
  • The purpose of this study was to assess the stress-induced pattern at the supporting bone, the implant fixture, the abutment and the abutment screw according to a friction-fit joint (Astra; Model 1) or slip- fit joint (Frialit-2; Model 2) in the internal connection system under vertical and inclined loading using finite element analysis. In conclusion, in the internal connection system of the implant and the abutment connection methods, the stress-induced pattern at the supporting bone, the implant fixture, the abutment and the abutment screw according to the abutment connection form had difference among them, and the stress distribution pattern usually had a widely distributed tendency along the inner surface of the implant fixture contacting the abutment post. The magnitude of the stress distributed in the supporting bone, the implant fixture, the abutment and the abutment screw was higher in the friction-fit joint than in the slip-fit joint. But it is considered that the further study is necessary about how this difference in the magnitude of the stress have an effect on the practical clinic.

FIT OF FIXTURE/ABUTMENT INTERFACE OF INTERNAL CONNECTION IMPLANT SYSTEM (내측연결 임플란트 시스템에서 고정체와 지대주 연결부의 적합에 관한 연구)

  • Lee Heung-Tae;Chung Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.2
    • /
    • pp.192-209
    • /
    • 2004
  • Purpose : The purpose of this study was to evaluate the machining accuracy and consistency of implant/abutment/screw combination or internal connection type. Material and methods: In this study, each two randomly selected internal implant fixtures from ITI, 3i, Avana, Bicon, Friadent, Astra, and Paragon system were used. Each abutment was connected to the implant with 32Ncm torque value using a digital torque controller or tapping. All samples were cross-sectioned with grinder-polisher unit (Omnilap 2000 SBT Inc) after embeded in liquid unsaturated polyester (Epovia, Cray Valley Inc). Then optical microscopic and scanning electron microscopic(SEM) evaluations of the implant-abutment interfaces were conducted to assess quality of fit between the mating components. Results : 1) Generally, the geometry of the internal connection system provided for a precision fit of the implant/abutment into interface. 2) The most precision fit of the implant/abutment interface was provided in the case of Bicon System which has not screw. 3) The fit of the implant/abutment interface was usually good in the case of ITI, 3I and Avana system and the amount of fit of the implant/abutment interface was similar to each other. 4) The fit of the implant/abutment interface was usually good in the case of Friadent, Astra and Paragon system. The case of Astra system with the inclined contacting surface had the most Intimate contact among them. 5) Amount of intimate contact in the abutment screw thread to the mating fixture was larger in assembly with two-piece type which is separated screw from abutment such as Friadent, Astra and Paragon system than in that with one-piece type which is not seperated screw from abutment such as ITI, 3I and Avana system. 6) Amount of contact in the screw and the screw seat of abutment was larger in assembly of Friadent system than in asembly of Astra system of Paragon system. Conclusion: Although a little variation in machining accuracy and consistency was noted in the samples, important features of all internal connection systems were the deep, internal implant-abutment connections which provides intimate contact with the implant walls to resist micro-movement, resulting in a strong stable interface. From the results of this study, further research of the stress distribution according to the design of internal connection system will be required.

A study on the micromotion between the dental implant and superstructure (임플란트와 상부구조물 사이의 micromotion에 관한 연구)

  • Kim, Ji-Hye;Song, Kwang-Yeob;Jang, Tae-Yeob;Park, Ju-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.1
    • /
    • pp.17-25
    • /
    • 2003
  • Treatment with implants of single tooth missing cases is both functional and esthetic. Although the success rate of single-tooth implant treatments is increasing, sometimes it makes some problems. Problems with single-tooth implant treatments include soft tissue complications, abutment screw fracture, and most commonly, abutment screw loosening, and these involve the instability of the dental implant-superstructure interface. This study investigated and compared dental implant screw joint micromotion of various implant system with external connection or internal connection when tested under simulated clinical loading, Six groups (N=5) were assessed: (1) Branemark AurAdapt (Nobel Biocare, Goteborg, Sweden), (2) Branemark EsthetiCone (Nobel Biocare, Goteborg, Sweden), (3) Neoplant Conical (Neobiotec, Korea), (4) Neoplant UCLA (Neobiotec, Korea), (5) Neoplant 5.5mm Solid (Neobiotec, Korea), and (6) ITI SynOcta (Institute Straumann, Waldenburg, Switzerland). Six identical frameworks were fabricated. Abutment screws were tightened to 32-35 Ncm and occlusal screw were tightened to 15-20 Ncm with an electronic torque controller. A mechanical testing machine applied a compressive cyclic load of 20kg at 10Hz to a contact point on each implant crown. Strain gauge recorded the micromotion of the screw joint interface once a second. Data were selected at 1, 500, 5,000, 10,000, 20,000, 30,000, 40,000 and 50,000 cycle and 2-way ANOVA test was performed to assess the statistical significance. The results of this study were as follows; The micromotion of the implant-superstructure in the interface increased gradually through 50,000 cycles for all implant systems. In the case of the micromotion according to cycle increase, Neoplant Conical and Neoplant UCLA system exhibited significantly increasing micromotion at the implant-superstructure interface (p<0.05), but others not significant. In the case of the micromotion of the implant-superstructure interface at 50,000 cycle, the largest micromotion were recorded in the Branemark EsthetiCone, sequently followed by Neoplant Conical, Neoplant UCLA, Branemark AurAdapt, ITI SynOcta and Neplant Solid. Internal connection system showed smaller micromotion than external connection system. Specially, Neoplant Solid with internal connection system exhibited significantly smaller micromotion than other implant systems except ITI SynOcta with same internal connection system (p<0.05). In the case of external connection, Branemark EsthetiCone and Neoplant Conical system with abutment showed significantly larger micromotion than Branemark AurAdapt without abutment (p<0.05).

Retrospective study of conical connection dental implant (Ankylos dental Implant). (Conical connection 임프란트(Ankylos dental implant)에 대한 후향적 임상연구)

  • Yang, Byoung-Eun;Song, Sang-Hun;Shim, Hye-Won;Lee, Sang-Min;Kim, Seong-Gon
    • The Journal of the Korean dental association
    • /
    • v.44 no.11 s.450
    • /
    • pp.739-747
    • /
    • 2006
  • Objectives. The standardization of connection between fixture and abutment has not been defined. The success of dental implants was not always depends on connection. However, the connection mechanism is one of the most important things for dental implant treatment success. Most implant systems are very comparable in their design and engineering. They share many common characteristics and have similar strengths and weaknesses. Their significant weaknesses are connection, microgap and the resulting micromovement allowing bacterial contamination and bone loss. In the present study, we investigated the clinical performance of Ankylos implant (conical connection implant) Patients and Methods. The clinical performance of conical connection implant was studied under well-controlled clinical conditions. A total of 133 conical connection implants were placed in 50 patients from April 2005 to March 2006. The mean follow-up loading period of implants which was considered successful was 220$\pm$29 days. We recorded the age, sex, installation site, reason of edentulous region, bone density of installation site, diameter and length of dental implants and periods from installation to uncovering surgery using patients medical chart. Results Four Ankylos implants were lost during pre-loading period. 129 implants provided excellent clinical performance during 220$\pm$29 days on an average. The short-term success rate of this conical connection implant system was 96.99%.

  • PDF

A STUDY ON THE VARIOUS IMPLANT SYSTEMS USING THE FINITE ELEMENT STRESS ANALYSIS (수종의 임플랜트 시스템에 따른 유한요소법적 응력분석에 관한 연구)

  • Yu Seong-Hyun;Park Won-Hee;Park Ju-Jin;Lee Young-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.207-216
    • /
    • 2006
  • Statement of Problem: To conduct a successful function of implant prosthesis in oral cavity for a long time, it is important that not only structure materials must have the biocompatibility, but also the prosthesis must be designed for the stress, which is occurred in occlusion, to scatter adequately within the limitation of alveolar bone around implant and bio-capacity of load support. Now implant which is used in clinical part has a very various shapes, recently the fixture that has tapered form of internal connection is often selected. However the stress analysis of fixtures still requires more studies. Purpose: The purpose of this study is to stress analysis of the implant prosthesis according to the different implant systems using finite element method. Material and methods: This study we make the finite element models that three type implant fixture ; $Br{\aa}nemark$, Camlog, Frialit-2 were placed in the area of mandibular first premolar and prosthesis fabricated, which we compared with stress distribution using the finite element analysis under two loading condition. Conclusion: The conclusions were as follows: 1. In all implant system, oblique loading of maximum Von mises stress of implant, alveolar bone and crown is higher than vertical loading of those. 2. Regardless of loading conditions and the type of system. cortical bone which contacts with implant fixture top area has high stress, and cancellous bone has a little stress. 3. Under the vertical loading, maximum Von mises stress of $Br{\aa}nemark$ system with external connection type and tapered form is lower than Camlog and Frialit-2 system with internal connection type and tapered form, but under oblique loading Camlog and Frialit-2 system is lower than $Br{\aa}nemark$ system.

FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS WITH INTERNAL CONNECTION BETWEEN THE IMPLANT AND THE ABUTMENT (임플란트와 지대주간 내측 연결을 갖는 임플란트 보철의 유한요소 응력분석)

  • Ahn, Jong-Kwan;Kay, Kee-Sung;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.4
    • /
    • pp.356-372
    • /
    • 2004
  • Statement of problom: In the internal connection system the loading transfer mechanism within the inner surface of the implant and also the stress distribution occuring to the mandible can be changed according to the abutment form. Therefore it is thought to be imperative to study the difference of the stress distribution occuring at the mandible according to the abutment form. Purpose: The purpose of this study was to assess the loading distributing characteristics of 3 implant systems with internal connection under vertical and inclined loading using finite element analysis. Material and method: Three finite element models were designed according to the type of internal connection of ITI(model 1), Friadent(model 2), and Bicon(model 3) respectively. This study simulated loads of 200N in a vertical direction (A), a $15^{\circ}$ inward inclined direction (B), and a $30^{\circ}$ outward inclined direction (C). Result: The following results have been made based on this numeric simulations. 1. The greatest stress showed in the loading condition C of the inclined load with outside point from the centric cusp tip. 2. Without regard to the loading condition, the magnitudes of the stresses taken at the supporting bone, the implant fixture, and the abutment were greater in the order of model 2, model 1, and model 3. 3. Without regard to the loading condition, greater stress was concentrated at the cortical bone contacting the upper part of the implant fixture, and lower stress was taken at the cancellous bone. 4. The stress of the implant fixture was usually widely distributed along the inner surface of the implant fixture contacting the abutment post. 5. The stress distribution pattern of the abutment showed that the great stress was usually concentrated at the neck of the abutment and the abutment post, and the stress was also distributed toward the lower part of the abutment post in case of the loading condition B, C of the inclined load. 6. In case of the loading condition B, C of the inclined load, the maximum von Misess stress at the whole was taken at the implant fixture both in the model 1 and model 2, and at the abutment in the model 3. 7. The stress was inclined to be distributed from abutment post to fixture in case of the internal connection system. Conclusion: The internal connection system of the implant and the abutment connection methods, the stress-induced pattern at the supporting bone, the implant fixture, and the abutment according to the abutment connection form had differenence among them, and the stress distribution pattern usually had a widely distributed tendency along the inner surface of the implant fixture contacting the a butment post.

Rotational tolerances of a titanium abutment in the as-received condition and after screw tightening in a conical implant connection

  • Prisco, Rosario;Troiano, Giuseppe;Laino, Luigi;Zhurakivska, Khrystyna
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.6
    • /
    • pp.343-350
    • /
    • 2021
  • PURPOSE. The success of an implant-prosthetic rehabilitation is influenced by good implant health and an excellent implant-prosthetic coupling. The stability of implant-prosthetic connection is influenced by the rotational tolerance between anti-rotational features on the implant and those on the prosthetic component. The aim of this study is to investigate the rotational tolerance of a conical connection implant system and its titanium abutment counterpart, in various conditions. MATERIAL AND METHODS. 10 preparable titanium abutments, having zero-degree angulation (MegaGen, Daegu, Korea) with an internal 5-degree conical connection, and 10 implants (MegaGen, Daegu, Korea) were used. Rotational tolerance between the connection of implant and titanium abutments was measured through the use of a tridimensional optics measuring system (Quick Scope QS250Z, Mitutoyo, Kawasaki, Japan) in the as-received condition (Time 0), after securing with a titanium screw tightening at 35 Ncm (Time 1), after tightening 4 times at 35 Ncm (Time 2), after tightening one more time at 45 Ncm (Time 3), and after tightening another 4 times at 45 Ncm (Time 4). RESULTS. The group "Time 0" had the lowest values of rotational freedom (0.22 ± 0.76 degrees), followed by the group Time 1 (0.46 ± 0.83 degrees), the group Time 2 (1.01 ± 0.20 degrees), the group Time 3 (1.30 ± 0.85 degrees), and the group Time 4 (1.49 ± 0.17 degrees). CONCLUSION. The rotational tolerance of a conical connection is low in the "as received" condition but increases with repetitive tightening and with application of a torque greater than 35 Ncm.