• Title/Summary/Keyword: Implant Design

Search Result 475, Processing Time 0.026 seconds

Influence of abutment height and convergence angle on the retrievability of cement-retained implant prostheses with a lingual slot

  • Choi, Kyu-Hyung;Son, KeunBaDa;Lee, Du-Hyeong;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.381-387
    • /
    • 2018
  • PURPOSE. Cement-retained implant prostheses can lack proper retrievability during repair, and residual cement can cause peri-implantitis. The purpose of this in vitro study was to evaluate the influence of abutment height and convergence angle on the retrievability of cement-retained implant prostheses with lingual slots, known as retrievable cement-type slots (RCS). MATERIALS AND METHODS. We fabricated six types of titanium abutments (10 of each type) with two different heights (4 mm and 6 mm), three different convergence angles ($8^{\circ}$, $10^{\circ}$, and $12^{\circ}$), a sloped shoulder margin (0.6 mm depth), a rectangular shape ($6mm{\times}6.5mm$) with rounded edges, and a rectangular ledge ($2mm{\times}1mm$) for the RCS. One monolithic zirconia crown was fabricated for each abutment using a dental computer-aided design/computer-aided manufacturing system. The abutments and crowns were permanently cemented together with dual-curing resin cement, followed by 24 hours in demineralized water at room temperature. Using a custom-made device with a slot driver and torque gauge, we recorded the torque ($N{\cdot}cm$) required to remove the crowns. Statistical analysis was conducted using multiple regression analysis and Mann-Whitney U tests (${\alpha}=.05$). RESULTS. Removal torques significantly decreased as convergence angles increased. Multiple regression analysis showed no significant interaction between the abutment height and the convergence angle (Durbin-Watson ratio: 2.186). CONCLUSION. Within the limitations of this in vitro study, we suggest that the retrievability of cement-retained implant prostheses with RCS can be maintained by adjusting the abutment height and convergence angle, even when they are permanently cemented together.

Biomechanical behavior of CAD/CAM cobalt-chromium and zirconia full-arch fixed prostheses

  • Barbin, Thais;Silva, Leticia Del Rio;Veloso, Daniele Valente;Borges, Guilherme Almeida;Presotto, Anna Gabriella Camacho;Barao, Valentim Adelino Ricardo;Groppo, Francisco Carlos;Mesquita, Marcelo Ferraz
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.329-337
    • /
    • 2020
  • PURPOSE. To verify the influence of computer-aided design/computer-aided manufacturing (CAD/CAM) implant-supported prostheses manufactured with cobalt-chromium (Co-Cr) and zirconia (Zr), and whether ceramic application, spark erosion, and simulation of masticatory cycles modify biomechanical parameters (marginal fit, screw-loosening torque, and strain) on the implant-supported system. MATERIALS AND METHODS. Ten full-arch fixed frameworks were manufactured by a CAD/CAM milling system with Co-Cr and Zr (n=5/group). The marginal fit between the abutment and frameworks was measured as stated by single-screw test. Screw-loosening torque evaluated screw stability, and strain analysis was explored on the implant-supported system. All analyses were performed at 3 distinct times: after framework manufacturing; after ceramic application in both materials' frameworks; and after the spark erosion in Co-Cr frameworks. Afterward, stability analysis was re-evaluated after 106 mechanical cycles (2 Hz/150-N) for both materials. Statistical analyses were performed by Kruskal-Wallis and Dunn tests (α=.05). RESULTS. No difference between the two materials was found for marginal fit, screwloosening torque, and strain after framework manufacturing (P>.05). Ceramic application did not affect the variables (P>.05). Spark erosion optimized marginal fit and strain medians for Co-Cr frameworks (P<.05). Screw-loosening torque was significantly reduced by masticatory simulation (P<.05) regardless of the framework materials. CONCLUSION. Co-Cr and Zr frameworks presented similar biomechanical behavior. Ceramic application had no effect on the biomechanical behavior of either material. Spark erosion was an effective technique to improve Co-Cr biomechanical behavior on the implant-supported system. Screw-loosening torque was reduced for both materials after masticatory simulation.

Implant selection for successful reverse total shoulder arthroplasty

  • Joo Han Oh;Hyeon Jang Jeong;Yoo-Sun Won
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.1
    • /
    • pp.93-106
    • /
    • 2023
  • Reverse total shoulder arthroplasty (RTSA) emerged as a new concept of arthroplasty that does not restore normal anatomy but does restore function. It enables the function of the torn rotator cuff to be performed by the deltoid and shows encouraging clinical outcomes. Since its introduction, various modifications have been designed to improve the outcome of the RTSA. From the original cemented baseplate with peg or keel, a cementless baseplate was designed that could be fixed with central and peripheral screws. In addition, a modular-type glenoid component enabled easier revision options. For the humeral component, the initial design was an inlay type of long stem with cemented fixation. However, loss of bone stock from the cemented stem hindered revision surgery. Therefore, a cementless design was introduced with a firm metaphyseal fixation. Furthermore, to prevent complications such as scapular notching, the concept of lateralization emerged. Lateralization helped to maintain normal shoulder contour and better rotator cuff function for improved external/internal rotation power, but excessive lateralization yielded problems such as subacromial notching. Therefore, for patients with pseudoparalysis or with risk of subacromial notching, a medial eccentric tray option can be used for distalization and reduced lateralization of the center of rotation. In summary, it is important that surgeons understand the characteristics of each implant in the various options for RTSA. Furthermore, through preoperative evaluation of patients, surgeons can choose the implant option that will lead to the best outcomes after RTSA.

Prospective Clinical Trial of Survival Rate for Two Different Implant Surfaces Using the Osstem(R) SS II Non-submerged Implant System in Partially Edentulous Patients

  • Kim, Su-Gwan;Lim, Chae-Su;Oh, Min-Seok;Park, Jin-Sung;Kim, Seo-Yoon;Seol, Ka-Young
    • Journal of Korean Dental Science
    • /
    • v.2 no.2
    • /
    • pp.35-41
    • /
    • 2009
  • Objective : This study sought to investigate the clinical survival rate of two implants with different surfaces: resorbable blasting media (RBM)-treated and calcium metaphosphate (CMP)-coated implant. Study design : SSII non-submerged implants (Osstem, Seoul, Korea) were placed in a total of 48 patients with mean age of 38.8. At least 31 patients in the experimental group had a CMP-coated implant, and 1 patient in the control group received a, RBM surface implant. The evaluation period was between April 2006 and December 2007. Radiographs, periotest, clinical periodontal examination, and prosthetic adjustment and occlusion were used. Results : The survival rate of the experimental and control groups after 1 year was 97.2% and 100%, respectively. The Wald confidence interval reported for the experimental group was not inferior to the control group. Conclusion : No significant differences were found between the RBM and CMP groups. The observed data suggest that CMP-coated methods can provide favorable clinical results for the functioning and healing of dental implants.

  • PDF

Factors Associated with the Stability of Two-part Mini-implants for Intermaxillary Fixation

  • Kim, Seong-Hun;Seo, Woon-Kyung;Lee, Won;Kim, In-Soo;Chung, Kyu-Rhim;Kook, Yoon-Ah
    • Journal of Korean Dental Science
    • /
    • v.2 no.2
    • /
    • pp.24-30
    • /
    • 2009
  • Two component orthodontic C-implants have been introduced as intermaxillary fixation (IMF) screws in cases of periodontal problems with bone loss, severely damaged teeth, or short roots. This retrospective research sought to investigate the complications and risk factors associated with the failure of two-part C-implants for IMF cases and to show the possible indications compared to one-component mini-implants. The study sample consisted of 46 randomly selected patients who had a total of 203 implants. Pearson chi-square tests of independence were used to test for associations among categorical variables. At least 19 of the total 203 implants failed (9.3%). There was no significant difference in implant failure due to gender, oral hygiene, and placement, although a significant difference due to soft tissue characteristics and root contact was observed. The two-component design of the mini-implant is reliable for difficult IMF cases. Note, however, that the factors influencing implant failure were found to be age, root damage, and condition of soft tissues.

  • PDF

Comparative study of abutment screw loosening with or without adhesive material

  • Arshad, Mahnaz;Shirani, Gholamreza;Refoua, Sina;Yeganeh, Mohammadreza Rahimi
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.2
    • /
    • pp.99-103
    • /
    • 2017
  • PURPOSE. The purpose of this study was to achieve more retention and stability and to delay or prevent screw loosening. MATERIALS AND METHODS. Twenty implants (Implantium 3.4 mm, Dentium, Seoul, Korea) were divided into 2 groups (n = 20). In the first group, an adhesive material was applied around the screw of the abutments (test group). In the second group, the screws are soaked in saliva (control group). All the screws were torqued under 30 N/cm, Then, the samples were gone through a cyclic fatigue loading process. After cyclic loading, we detorqued screws and calculated detorque value. RESULTS. In comparison with the control group, all the implant screws in the test group were smeared with the adhesive material, showing significant higher detorque value. CONCLUSION. There are significantly higher detorque values in the group with adhesive. It is recommended to make biocompatible adhesive to reduce screw loosening.

Finite element analysis of stress distribution on supporting bone of posterior implant partial dentures by loading location (유한요소 분석을 이용한 하중 위치에 따른 구치부 임플란트 국소의치 지지골의 응력 분포 연구)

  • Son, Sung-Sik;Kim, Young-Jick;Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.29 no.1
    • /
    • pp.93-101
    • /
    • 2007
  • The purpose of this study is to evaluate the effect of three different oblique mechanical loading to occlusal surfaces of posterior implant partial dentures on the stress distributions in surrounding bone, using 3-dimensional finite element method. A 3-dimensional finite element model of a posterior implant partial dentures composed of three unit implants, simplified 3 gold alloy crown and supporting bone was developed according to the design of AVANA self tapping implant for this study. Three kinds of surface distributed oblique loads(300 N) are applied to following occlusal surfaces in the three crowns; 1) All occlusal surfaces in the three crown(load of 300 N was shared to three crown), 2) Occlusal surface of centered crown (load of 300 N was applied to a centered crown), 3) Occlusal surface of proximal crown(load of 300 N was applied to a distal proximal crown). In the results, 141 MPa of maximum von Mises stress was calculated at third loading condition and 98 MPa of minimum von Mises stress was calculated at first loading condition. From the results, location and type of occlusive loading conditions are important for the safety of supporting bone.

  • PDF

A VITRO STUDY OF RETAINED SCREW STABILITY BY VARIOUS CONNECTION DESIGNS BETWEEN FIXTURE AND ABUTMENT IN IMPLANT DENTISTRY (임플란트 고정체와 지대주 연결 형태의 차이에 따른 유지 나사 안정성에 대한 연구)

  • Yang Jae-Sik;Vang Mong-Sook;Jo Gyu-Jong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.1
    • /
    • pp.83-93
    • /
    • 2004
  • Statement of problem : Since the concept of osseointegrated dental implant by $Br{\aa}nemark$ et al was first applied to mandibular full edentulous patients. Recently it is considerated the first treatment option on missing teeth. A common problem associated with dental implant restorations is loosening of screws that retain the prosthesis to the abutment and the abutment to the implant fixture. Purpose : This study is to examine the influence on screw loosening of implant-abutment designs. Material and methods : External hex, cone screw, beveled hex, cam cylinder, cylinder hex by means of evaluating the loosening torques, with respect to a range of tightening torques after repeated loading. Result : 1. Cone screw, beveled hex groups are the highest initial tightening rate and cylinder hex, external hex groups are the lowest initial tightening rate (p < 0.05). 2. Cone screw groups are the highest after repeated loading tightening rate and cylinder hex groups are lowest after repeated loading tightening rate(p < 0.05). 3. Cone screw groups have the highest initial stability and anal stability. 4. All groups are decreased tightening rate after repeated loading.

Finite element analysis on the stress of supporting bone by diameters and lengths of dental implant fixture (유한요소법을 이용한 치과 임플란트 고정체의 직경과 길이에 따른 지지골의 응력 분석)

  • Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.38 no.3
    • /
    • pp.151-156
    • /
    • 2016
  • Purpose: The dental implant should be enough to endure chewing load and it's required to have efficient design and use of implant to disperse the stress into bones properly. This study was to evaluate the stress distribution on a supporting bone by lengths and diameters of the implant fixture. Methods: The modeling and analysis of stress distribution was used for the simple molar porcelain crown model by Solidworks as FEM program. It was designed on applying with tightening torque of 20 Ncm of a abutment screw between a cement retained crown abutment and a fixture. The fixtures of experimental model used 10, 13mm by length and 4, 5mm by diameter. A external vertical loading on the two buccal cusps of crown and performed finite element analysis by 100 N. Results: The maximum von Mises stress(VMS) of all supporting bone models by fixture length and diameter were concentrated on the upper side of supporting compact bone. The maximum stress of each model under vertical load were 164.9 MPa of M410 model, and 141.2 MPa of M413 model, 54.3 MPa of M510 model, 53.6 MPa of M513 model. Conclusion: The stress reduction was increase of fixture's diameter than it's length. So it's effective to use the wider fixture as possible to the conditions of supporting bone.

Properties of Reducing On-resistance for JFET Region in Power MOSFET by Double Ion Implantation (JFET 영역의 이중이온 주입법을 이용한 Power MOSFET의 온저항 특성에 관한 연구)

  • Kim, Ki Hyun;Kim, Jeong Han;Park, Tae-Su;Jung, Eun-Sik;Yang, Chang Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.4
    • /
    • pp.213-217
    • /
    • 2015
  • Device model parameters are very important for accurate estimation of electrical performances in devices, integrated circuits and their systems. There are a large number of methods for extraction of model parameters in power MOSFETs. For high efficiency, design is important considerations of a power MOSFET with high-voltage applications in consumer electronics. Meanwhile, it was proposed that the efficiency of a MOSFET can be enhanced by conducting JFET region double implant to reduce the On-resistance of the transistor. This paper reports the effects of JFET region double implant on the electrical properties and the decreasing On-resistance of the MOSFET. Experimental results show that the 1st JFET region implant diffuse can enhance the On-resistance by decreasing the ion concentration due to the surface and reduce the On-resistance by implanting the 2nd Phosphorus to the surface JFET region.