• Title/Summary/Keyword: Implant 3-unit bridge

Search Result 6, Processing Time 0.022 seconds

A retrospective comparison of clinical outcomes of implant restorations for posterior edentulous area: 3-unit bridge supported by 2 implants vs 3 splinted implant-supported crowns

  • Yi, Yuseung;Heo, Seong-Joo;Koak, Jai-Young;Kim, Seong-Kyun
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.4
    • /
    • pp.223-235
    • /
    • 2022
  • PURPOSE. To compare the clinical outcomes of two types of implant restoration for posterior edentulous area, 3-unit bridge supported by 2 implants and 3 implant-supported splinted crowns. MATERIALS AND METHODS. The data included 127 implant-supported fixed restorations in 85 patients: 37 restorations of 3-unit bridge supported by 2 implants (2-IB), 37 restorations of 3 implant-supported splinted crowns (3-IC), and 53 single restorations (S) as controls. Peri-implantitis and mechanical complications that occurred for 14 years were analyzed by multivariable Cox regression model. Kaplan-Meier curves and the multivariable Cox regression model were used to analyze the success and survival of implants. RESULTS. Peri-implantitis occurred in 28.4% of 2-IB group, 37.8% of 3-IC group, and 28.3% of S control group with no significant difference. According to the implant position, middle implants (P2) of the 3-IC group had the highest risk of peri-implantitis. The 3-IC group showed a lower mechanical complication rate (7.2%) than the 2-IB (16.2%) and S control group (20.8%). The cumulative success rate was 52.8% in S (control) group, 62.2% in 2-IB group, and 60.4% in 3-IC group. The cumulative survival rate was 98.1% in S (control) group, 98.6% in 2-IB group, and 95.5% in 3-IC group. There was no significant difference in the success and survival rate according to the restoration type. CONCLUSION. The restoration type was not associated with the success and survival of implants. The risk of mechanical complications was reduced in 3 implant-supported splinted crowns. However, the middle implants of the 3 implant-supported splinted crowns had a higher risk of peri-implantitis.

An evaluation of the stress effect of different occlusion concepts on hybrid abutment and implant supported monolithic zirconia fixed prosthesis: A finite element analysis

  • Yesilyurt, Nilgün Gulbahce;Tuncdemir, Ali Riza
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.4
    • /
    • pp.216-225
    • /
    • 2021
  • PURPOSE. The aim of this study is to evaluate the effects of canine guidance occlusion and group function occlusion on the degree of stress to the bone, implants, abutments, and crowns using finite element analysis (FEA). MATERIALS AND METHODS. This study included the implant-prosthesis system of a three-unit bridge made of monolithic zirconia and hybrid abutments. Three-dimensional (3D) models of a bone-level implant system and a titanium base abutment were created using the original implant components. Two titanium implants, measuring 4 × 11 mm each, were selected. The loads were applied in two oblique directions of 15° and 30° under two occlusal movement conditions. In the canine guidance condition, loads (100 N) were applied to the canine crown only. In the group function condition, loads were applied to all three teeth. In this loading, a force of 100 N was applied to the canine, and 200-N forces were applied to each premolar. The stress distribution among all the components of the implant-bridge system was assessed using ANSYS SpaceClaim 2020 R2 software and finite element analysis. RESULTS. Maximum stress was found in the group function occlusion. The maximum stress increased with an increase in the angle of occlusal force. CONCLUSION. The canine guidance occlusion with monolithic zirconia crown materials is promising for implant-supported prostheses in the canine and premolar areas.

IN VITRO EVALUATION OF PERIOTEST VALUES UNDER VARIOUS CONDITIONS OF PROSTHESES (보철물 조건에 따른 Periotest수치의 실험적 평가)

  • Han, Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.4
    • /
    • pp.793-800
    • /
    • 1997
  • Periotest(Siemens, Germany) has been used to test mobility of the implants clinically, however the effects of target materials and connection methods on the PTVs(Periotest Values) have not been evaluated. Periotest has been regarded as a reliable and objective tool to test implant and natural teeth mobility clinically, however this instrument showed different PTVs under various test conditions. This in vitro study was designed to compare PTVs of different veneering materials and prosthodontic designs (single and bridge restorations). To compare the effects of veneering materials on PTVs, 1 mm thickness of five different testing materials (porcelain, type III gold alloy, pure titanium, composite resin, acrylic resin) were placed on the resin block. Three full length of 13 mm Mark II implant fixtures were embedded into autopolymerizing resin block to fabricate single and bridge restorations. To evaluate effects of the connection method in single restorations, PTVs of screw retained(UCLA type) and cementation type(Cera-One system) were compared. Finally, to test reliability of PTVs of the final restorations, screw retained three unit short span PFM bridges were fabricated on the standard and Estheti-Cone abutments. All testing components were tightened with torque controller and PTVs of all specimens were measured 15 times for statistical analysis with SAS program. Following conclusions were made within the limit of this in vitro study. 1. PTVs of type III gold alloy, grade II titanium, composite resin veneering materials showed no significant differences, however acrylic resin and porcelain showed significant differences (P<0.05). 2. Single tooth restorations showed consistent PTVs as long as proper torque force was applied. 3. PTVs of bridge type prostheses was inconsistent regardless of abutment types. 4. PTVs of the prostheses showed higher scores and standard deviations than those of abutments regardless types of connection (P<0.05).

  • PDF

A Retrospective Clinical Study of Survival Rate for a Single Implant in Posterior Teeth (구치부 단일 임플란트의 생존율에 대한 후향적 연구)

  • Han, Sung-Il;Lee, Jae-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.3
    • /
    • pp.186-199
    • /
    • 2012
  • Purpose: Single implants, of which screw loosening has been observed frequently, presents problems such as fixtures fractures, marginal bone loss, and inflammation of the soft tissue around the implant. However, the single implant is more conservative, cost effective, and predictable compared to the 3 unit bridge with respect to the long-term outcome. This study evaluated the survival rate as well as future methods aimed at increasing the survival rate in single implants in posterior teeth. Methods: Among the implants placed in the Dankook University Dental Hospital department of Oral & Maxillofacial surgery from January 2001 to June 2008, 599 implants placed in the maxillar and mandibular posterior were evaluated retrospectively. Survival rates were investigated according to implant location, cause of tooth loss, gender, age, general disease, fixture diameter and length, surface texture, implant type and shape, presence of bone graft, surgery stage, surgeons, bone quality and opposite teeth. Results: Out of 599 single implants in posterior teeth, 580 implants survived and the survival rate was 96.8%. The difference in survival rate was statistically significant according to the implant location. The survival rate was low (84.2%) in implants exhibiting a wide diameter (${\geq}5.1mm$) and the surface treated by the acid etching group demonstrated a significantly lower survival rate (91.1%). One stage surgical procedure, which implemented a relatively better bone quality survival rate (100%), was higher than the two stage surgical procedure (96.1%). The survival rate of type IV bone quality (75%) was significantly lower than the other bone quality. Conclusion: Single posterior teeth implant treatments should use an improved surface finishing fixture as well as careful and safe procedures when performing implant surgery in the maxilla premolar and molar regions since bone quality is poor.

Stress Analysis on the Supporting Bone around the Implant According to the Vertical Bone Level (치조골 높이가 다른 임프란트 주위 지지골 응력분석)

  • Boo, Soo-Boong;Jeung, Jei-Ok;Lee, Seung-Hoon;Kim, Chang-Hyun;Lee, Seung-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.1
    • /
    • pp.55-68
    • /
    • 2007
  • The purpose of this study was to analyze the distribution of stress in the surrounding bone around implant placed in the first and second molar region. Two different three-dimensional finite element model were designed according to vertical bone level around fixture ($4.0mm{\times}11.5mm$) on the second molar region. A mandibular segment containing two implant-abutments and a two-unit bridge system was molded as a cancellous core surrounded by a 2mm cortical layer. The mesial and distal section planes of the model were not covered by cortical bone and were constrained in all directions at the nodes. Two vertical loads and oblique loads of 200 N were applied at the center of occlusal surface (load A) or at a position of 2mm apart buccally from the center (load B). Von-Mises stresses were analyzed in the supporting bone. The results were as follows; 1. With the vertical load at the center of occlusal surface, the stress pattern on the cortical and cancellous bones around the implant on model 1 and 2 was changed, while the stress pattern on the cancellous bone with oblique load was not. 2. With the vertical load at the center of occlusal surface, the maximum von-Mises stress appeared in the outer distal side of the cortical bone on Model 1 and 2, while the maximum von-Mises stress appeared in the distal and lingual distal side of the cortical bone with oblique load. 3. With the vertical load at a position of 2 mm apart buccally from the center, there was the distribution of stress on the upper portion of the implant-bone interface and the cortical bone except for the cancellous bone, while there was a distribution of stress on the cancellous bones at the apical and lingual sides around the fixture and on the cortical bone with oblique load. 4. With the changes of the supporting bone on the second molar area, the stress pattern on the upper part of the cortical bone between two implants was changed, while the stress pattern on the cancellous bone was not. The results of this study suggest that establishing the optimum occlusal contact considering the direction and position of the load from the standpoint of stress distribution of surrounding bone will be clinically useful.

APPLICATION OF CAD/CAM FOR ORAL REHABILITATION IN A PATIENT WITH DOWN SYNDROME (CAD/CAM을 이용한 다운 증후군 환자의 구강 재건)

  • Chung, Hyunjin;Shim, Joon-Sung;Choi, Byung-Jai;Lee, Jae-Ho
    • The Journal of Korea Assosiation for Disability and Oral Health
    • /
    • v.13 no.2
    • /
    • pp.95-98
    • /
    • 2017
  • Due to hypodontia, poor oral hygiene, and significantly more prevalent periodontal disease, patients with Down syndrome show higher incidence of edentulism. Oral rehabilitation of such patients is imperative but challenging as high rates of prosthesis failure are reported due to malocclusion, high masticatory force, and parafunctional habits. As CAD/CAM(Computer-Aided Design and Computer Aided Manufacturing) is the recent trend in prosthodontics, this report discusses the application of CAD/CAM in a Down syndrome patient. A 25-year-old patient with Down syndrome was presented to the Department of Pediatric Dentistry, Yonsei University Dental Hospital for oral examination. 5 maxillary teeth were missing, 3 were fully impacted, and 4 had grade III mobility. The patient underwent general anesthesia for extraction of impacted and mobile teeth, implant surgery, and final impression for prosthesis. Afterwards, CAD/CAM was used to design and manufacture a 10-unit zirconia bridge. However the bridge was fractured after 18 months due to the patient's bruxism and high masticatory force. Final impression taking, bite registration, cast fabrication, cast scanning, and prosthesis designing were not needed as CAD/CAM data remained. Previous CAD/CAM design was used to remanufacture the zirconia bridge. Down syndrome patients have malocclusion, high masticatory force, and parafunctional habits which increase the possibility of prosthesis fracture. CAD/CAM is beneficial for Down syndrome patients as previous digital records can be utilized for prosthesis repair or remake. In detail, application of CAD/CAM in remanufacturing decreases patient's discomfort of impression taking, shortens and simplifies dental laboratory procedures, and reduces clinician's effort of taking detailed final impressions or accurate bite registration. In conclusion, oral rehabilitation using CAD/CAM provides not only satisfactory levels of comfort, stability, and esthetics, but also easier repair or remake compared to conventional prostheses.