• 제목/요약/키워드: Impeller blade angle

검색결과 86건 처리시간 0.031초

산업용 교반기의 유동해석용 전/후처리 장치의 개발 (The Development of a Processor for an Industrial Mixer)

  • 김민철;김영규;허남건
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.627-630
    • /
    • 2002
  • In the present study a mesh generation program is developed for the flow analysis of industrial mixers. With this program one can select various design parameters such as impeller types, vessel type, number of baffles, number of blades, blade pitched angle, stages of impeller, rotational speed etc. Post processing capabilities are also imbedded in the program. Along with brief explanation of the program, examples of flow simulation for various type of mixers by using the program are also presented to show effectiveness of the program. It is expected that this program can be used to understand the effect of design parameters on the performance of particular type of the mixer, and hence to achieve the optimal design.

  • PDF

원심다단펌프용 디퓨저-리턴채널의 유동특성 (Hydrodynamic Characteristics of Vaned-Diffuser and Return-Channel for a Multistage Centrifugal Pump)

  • 오형우
    • 한국유체기계학회 논문집
    • /
    • 제14권6호
    • /
    • pp.54-60
    • /
    • 2011
  • This paper presents the steady-state performance analysis of the first stage of a multistage centrifugal pump, composed of a shrouded-impeller, a vaned-diffuser and a return-channel, using the commercially available computational fluid dynamics (CFD) code, ANSYS CFX. The detailed flow fields in the vaned-diffuser with outlet in its side wall and the return-channel are investigated by the CFD code adopted in the present study. The effect of the vaned-diffuser with a downstream crossover bend and the corresponding return-channel on the overall hydrodynamic performance of the first stage pump has also been demonstrated over the normal operating conditions. The predicted hydrodynamics for the diffusing components herein could provide useful information to match the inlet blade angle of the next stage impeller for improving the multistage pump performances.

리어가이더 시작각 변화가 횡류홴 성능에 미치는 영향 (Effects of Starting Angles of a Rearguider on the Performance of a Cross-Flow Fan)

  • 김형섭;김동원;윤태석;박성관;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1981-1986
    • /
    • 2004
  • A cross-flow fan relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice and blades have a forward curved shape. Therefore, the performance of a cross-flow fan is influenced 25% by the impeller, 60% by the rearguider and the stabilizer, 15% by the heat exchanger. At the low flow rate, there exists a rapid pressure head reduction, a noise increase and an unsteady flow against a stabilizer and a rearguider. Moreover, it is difficult to analyze the reciprocal relations of the cross-flow fan because each parameter is independent. Numerical analyses are conducted with different starting angles of the rearguider. Two-dimensional, unsteady governing equations are solved, using FVM, PISO algorithm, sliding grid system and ${\kappa}-{\varepsilon}$ standard turbulence model.

  • PDF

혼합기 블레이드 설계변수에 따른 입자의 혼합성능 연구 (Effects of Design Parameters of Mixer Blades on Particle Mixing Performance)

  • 황선필;박상현;손동우
    • 한국전산구조공학회논문집
    • /
    • 제30권4호
    • /
    • pp.363-370
    • /
    • 2017
  • 본 논문에서는 원통형 혼합기를 대상으로 블레이드의 각도, 길이, 개수 및 블레이드와 탱크 바닥과의 간극을 설계변수로 선정하고, 각각의 설계변수가 혼합성능에 미치는 영향을 분석하였다. 이산요소법을 이용하여 임펠러 회전에 의한 고체 입자의 혼합공정을 해석하였으며, 혼합지수를 도입하여 혼합성능을 정량적으로 평가하였다. 다양한 설계변수의 조합을 고려한 실험계획법으로 설계변수의 주효과와 교호작용을 분석함으로써, 블레이드 각도가 입자의 혼합성능에 가장 지배적인 영향을 미치며 간극의 영향은 상대적으로 작다는 결론을 도출할 수 있었다. 또한 가장 우수한 혼합성능을 보이는 설계변수의 조합을 제시하였다.

원심다익송풍기의 고효율 설계를 위한 수치최적설계 (Numerical Optimization of a Multi-blades Centrifugal Fan for High-efficiency Design)

  • 서성진;김광용
    • 한국유체기계학회 논문집
    • /
    • 제7권3호
    • /
    • pp.32-38
    • /
    • 2004
  • Shape of a multi-blades centrifugal fan is optimized by response surface method based on three-dimensional Navier-Stokes analysis. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard $k-{epsilon}$ turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Optimizations with and without constraints are carried out. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. The correlation of efficiency with relative size of inactive zone at the exit of impeller is discussed as well as with average momentum fluxes in the scroll.

Return Vane Installed in Multistage Centrifugal Pump

  • Miyano, Masafumi;Kanemoto, Toshiaki;Kawashima, Daisuke;Wada, Akihiro;Hara, Takashi;Sakoda, Kazuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • 제1권1호
    • /
    • pp.57-63
    • /
    • 2008
  • To optimize the stationary components in the multistage centrifugal pump, the effects of the return vane profile on the performances of the multistage centrifugal pump were investigated experimentally, taking account of the inlet flow conditions for the next stage impeller. The return vane, whose trailing edge is set at the outer wall position of the annular channel downstream of the vane and which discharges the swirl-less flow, gives better pump performances. By equipping such return vane with the swirl stop set from the trailing edge to the main shaft position, the unstable head characteristics can be also suppressed successfully at the lower discharge. Taking the pump performances and the flow conditions into account, the impeller blade was modified so as to get the shock-free condition where the incidence angle is zero at the inlet.

원심다익송풍기의 고효율 설계를 위한 수치최적설계 (Numerical Optimization of A Multi-Blades Centrifugal Fan For High-Efficiency Design)

  • 서성진;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.385-390
    • /
    • 2003
  • Shape of a multi-blades centrifugal fan is optimized by response surface method based on three-dimensional Navier-Stokes analysis. For numerical analysis, Reynolds-averaged Wavier-Stokes equations with standard $k-{\varepsilon}$ turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Optimizations with and without constraints are carried out. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. The correlation of efficiency with relative size of inactive zone at the exit of impeller is discussed as well as with average momentum fluxes in the scroll.

  • PDF

무선진공청소기 팬 모터 단품의 유량성능 향상과 공력소음 저감을 위한 임펠라 최적설계 (Optimal design of impeller in fan motor unit of cordless vacuum cleaner for improving flow performance and reducing aerodynamic noise)

  • 김건우;유서윤;정철웅;서성진;장철민
    • 한국음향학회지
    • /
    • 제39권5호
    • /
    • pp.379-389
    • /
    • 2020
  • 본 논문에서는 무선진공청소기용 팬 모터 단품의 유량 및 소음성능을 향상시키기 위하여 무선청소기 유로를 통하여 공기를 흡입하는 임펠라에 대한 최적설계를 수행하였다. 우선, 팬 모터 단품, 특히 임펠라의 유동장을 분석하기 위하여 비정상, 비압축성 Reynolds averaged Navier-Stokes(RANS) 방정식을 전산유체역학(Computational Fluid Dynamics, CFD)에 기초하여 해석하였다. 예측한 유동장 정보를 입력값으로 Ffowcs-Williams and Hawkings(FW-H) 방정식을 사용하여 임펠라로부터 방사되는 소음을 수치적으로 예측하였다. 유량과 소음에 대한 수치해석 결과를 실험을 통해 측정한 팬 모터 단품의 P-Q 곡선과 음압 스펙트럼과 비교하여 사용한 수치방법의 유효성을 확인하였다. 수치해석결과로부터 임펠라 날개의 코드방향 중간부분의 급격한 곡률 변화로 인하여 강한 와류가 형성되는 것을 확인하였다. 와류는 유동에는 손실로 소음에는 소음원으로 작용하기 때문에 기존의 임펠라를 재설계하여 와류를 개선하고자 하였다. 2인자 반응표면방법을 사용하여 최대유량과 최소소음을 나타내는 입·출구 뒷젖힘각(sweep angle)을 결정하였다. 최종 선정된 설계안에 대한 추가 해석을 통하여 유량성능과 소음성능이 개선됨을 확인하였다.

스테레오 PIV 기법에 의한 임펠러 와류유동의 3차원 구조측정 (Identification on the Three-Dimensional Vortical Structures of Impeller Flow by a Multi-Plane Stereoscopic PIV Method)

  • 윤상열;김경천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.690-695
    • /
    • 2001
  • The three-dimensional spatial structures of impeller flow created by a six bladed Rushton turbine have identified based on the volumetric velocity information from multi-plane stereoscopic PIV measurements. A total of 10 planes with 2 mm space with a 50 mm by 64 mm size of the field of view were targeted. To reduce the depth of focus, we adopted an angle offset configuration which satisfied the Scheimpflug condition. The distortion compensation procedure was utilized during the in situ calibration. Phase-locked instantaneous data were ensemble averaged and interpolated in order to obtain mean 3-D, volumetric velocity fields on a 60 degree sector of a cylindrical ring volume enclosing the turbine blade. Using the equi-vorticity surface rendering, the spatial structure of the trailing vortices was clearly demonstrated. Detail flow characteristics of the radial jet reported in previous studies of mixer flows were easily identified.

  • PDF

탈설계 조건에서 원심압축기의 미끄럼 계수 모델들의 평가 (Assessment of Slip Factor Models for Centrifugal Compressor at Off-Design Condition)

  • 윤성호;백제현
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1459-1466
    • /
    • 2001
  • A slip factor is defined as an empirical factor, which should be multiplied to theoretical energy transfer to estimate real work input of a centrifugal compressor. During the last century, researchers have tried to develop simple empirical models to predict the slip factor. However most of these models have been developed based only on design point data. Furthermore flow is assumed inviscid. As a result, these models often fail to predict the correct slip factor at off-design condition. In this study, various models for the slip factor were analysed and compared with experimental and numerical data at off-design conditions. As a result of this study, Wiesner's and Paeng and Chung's models are shown to be applicable for radial impeller, but all the models are found to be inappropriate for backswept impellers.