• Title/Summary/Keyword: Impeller Shape

Search Result 161, Processing Time 0.025 seconds

A Study on Effect of Flow Characteristics for Turbine Impeller Shape (Turbine Impeller 형상이 유동특성에 미치는 영향에 관한 연구)

  • Jeon, Eon-Chan;Youn, Gi-Ho;Kang, Chang-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.36-43
    • /
    • 2014
  • Recently, research has been conducted to develop the ORC (organic Rankine cycle), to recover waste heat from facilities such as industrial plants ultimately to create mechanical or electrical energy. The ORC system consists of a heat exchange, a condenser, a pump and a boiler. In this paper, 84 flow analyses were conducted with 21 cases and three variables, i.e., a number of large wings, a number of small wings, and RPMs. R245fa was used as a refrigerant. The flow cavitation phenomenon was investigated through a flow analysis, and a flow stream analysis was conducted.

A Study on Tool Path Generation for Machining Impellers with 5-Axis Machining Center (5축 Machining Center를 이용한 임펠러 가공을 위한 공구경로 생성에 관한 연구)

  • 장동규;조환영;이희관;공영식;양균의
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.83-90
    • /
    • 2004
  • This paper proposes a tool path generation method for machining impellers with 5-axis machining center. The shape of impeller is complex, being composed of pressure surface, suction surface and leading edge, and so on. The compound surface which is made of ruled surface such as pressure surface and suction surface and leading edge such as fillet surface, makes the tool path generation much complicated. To achieve efficient roughing, cutting area is divided into two region and then tool radius of maximum size that do not cause tool intereference is selected for shortening machining time. In finishing, accuracy is improved using side cutting for blade surface and point milling for leading edge.

Effects of inlet shape on the performance of a submerged cargo pump (입구부 형상이 수중 카고 펌프의 성능에 미치는 영향)

  • Kim, Joon-Hyung;Choi, Young-Seok;Lee, Kyoung-Yong;Yoon, Joon-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.44-49
    • /
    • 2007
  • In this paper, effects of inlet shape on the performance of a submerged cargo pump were numerically studied using a commercial CFD code CFX. The inlet shape, especially the gap between pump and suction well, is an important parameter in a point of view of performances of submerged cargo pump due to its effects on the residual and also hydraulic performance of the pump, respectively. To know the optimized gap, the overall performance degradations were calculated with the gap. In addition to that, the flow field through the gap was investigated to explain the effect of velocity non-uniformity on the performance of the pump impeller.

Optimization of impeller blade shape for high-performance and low-noise centrifugal pump (고성능 저소음 원심펌프 개발을 위한 임펠러 익형 최적설계)

  • Younguk Song;Seo-Yoon Ryu;Cheolung Cheong;Tae-hoon Kim;Junhyo Koo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.519-528
    • /
    • 2023
  • The aim of this study was to enhance the flow rate and noise performance of a centrifugal pump in dishwashers by designing an optimized impeller shape through numerical and experimental investigations. To evaluate the performance of the target centrifugal pump, experiment was conducted using a pump performance tester and noise experiment was carried out in a semi-anechoic chamber with microphones and a reflecting wall behind the dishwasher. Through the use of advanced computational fluid dynamics techniques, numerical simulations were performed to analyze the flow and aeroacoustics performance of our target centrifugal pump impeller. To achieve this, numerical simulations were carried out using the Reynolds-Average Navier-Stokes equations and Ffowcs-Willliams and Hawkings equations as governing equations. In order to ensure the validity of numerical methods, a thorough comparison of numerical results with experimental results. After having confirmed the reliability of the current numerical method of this study, the optimization of the target centrifugal pump impeller was conducted. An improvement in flow rate was confirmed numerically, and a manufactured proto-type of the optimized model was used for experimental investigation. Furthermore, it was observed that by applying the fan law, we could effectively reduce noise levels without reducing the flow rate.

A numerical study on the suction performance of a submerged cargo pump (수중 카고 펌프의 흡입성능에 관한 수치해석적 연구)

  • Kim, Joon-Hyung;Choi, Young-Seok;Lee, Kyoung-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.6
    • /
    • pp.18-23
    • /
    • 2008
  • In this paper, effects of inlet shape on the performance of a submerged cargo pump were numerically studied using a commercial CFD code ANSYS-CFX. The inlet shape, especially the gap between pump and suction well, is an important parameter in a point of view of performances of submerged cargo pump due to its effects on the residual and also hydraulic performance of the pump, respectively. To investigate the optimized gap, the overall performance degradations were calculated with the gap. In addition to that, the flow field through the gap was investigated to explain the effect of velocity non-uniformity on the performance of the pump impeller.

Numerical Study on Performance of Centrifugal Compressor Volute (원심 압축기 볼루트 성능 해석)

  • Kim, Woo-June;Oh, Chang-Hoon;Cho, Kyung-Seok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.539-542
    • /
    • 2006
  • A volute (or scroll) of a centrifugal compressor collects the flows from impeller or diffuser, and passes it to a pipe at the exit. This flow still contains some kinetic energy which is not converted into pressure at diffuser, thus volute designer must concern the way to minimize losses. This study defines some variables which determine the shape of volute, and carry out computational analysis based on Design of Experiment to optimize the performance of volute.

  • PDF

A Numerical Analysis on Effect of Baffles in a Stirred Vessel (교반탱크에서 베플 형상의 영향에 관한 수치 해석적 연구)

  • Yeum, Sang Hoon;Lee, Seok Soon
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • The flow characteristics in a stirred tank are very useful in a wide variety of industrial applications. Generally, the flow pattern, power consumption and mixing time in stirred vessels depend not only on the design of the impeller, but also on the tanks' geometry and internal structure. In this study, the analysis of an unstable and unsteady complicated flow characteristics generated by the interaction between the baffle shape and impeller were performed using the ANSYS FLUENT LES Turbulence Model. The study compared the predictions of CFD with the interaction between two types of rotating impellers (axial and radial flows) and the shapes of three baffles. The results of the comparison verified that the design model showed a relatively efficient trend in the mixing flow fields and characteristics around the impeller and baffles during agitation.

Effect of pitch angle and blade length on an axial flow fan performance (피치각과 날개 길이 변화에 따른 축류팬의 성능 및 소음 특성에 관한 실험적 연구)

  • Jeon, Sung-Taek;Cho, Jin-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3170-3176
    • /
    • 2013
  • In this study, the performance of an impeller according to blade length and pitch angle was studied experimentally by building a variable pitch impeller while changing blade length to review the effect of blade length and pitch angle on a fan's performance and sound characteristics. The pitch angle was changed in six steps from $20^{\circ}{\sim}45^{\circ}$ at intervals of $5^{\circ}$ while the blade lengths were changed 80 mm, 90 mm, 100 mm, 110 mm and 120 mm with an identical airfoil shape while carrying out the experiment.

Design Optimization of A Multi-Blade Centrifugal Fan with Navier-Stokes Analysis and Response Surface Method (삼차원 Navier-Stokes 해석과 반응면기법을 이용한 원심다익송풍기의 최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1457-1463
    • /
    • 2003
  • In this paper, the response surface method using three-dimensional Navier-Stokes analysis to optimize the shape of a multi-blade centrifugal fan, is described. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard k - c turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.

Development of Centrifugal Compressors in an 1.2MW Industrial Gas Turbine(I)-Aerodynamic Design and Analysis- (1.2MW급 산업용 가스터빈 원심압축기 개발(1)- 공력설계해석 -)

  • Jo, Gyu-Sik;Lee, Heon-Seok;Son, Jeong-Rak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2707-2720
    • /
    • 1996
  • The aerodynamic design of the two-stages of centrifugal compressors in an 1.2MW industrial gas turbine is completed with the application of numerical analyses. The final shape of an intake, the axial guide vanes and a return channel is determined using several interactions between design and two-dimensional turbulent flow analysis, focused on the minimum loss of internal flows. The one-dimensional turbulent flow analysis, focused on the minimum loss of internal flows. The one-dimensional design and prediction of aerodynamic performances for the compressors are performed by two different methods; one is a method with conventional loss models, and the other a method with the two-zone model. The combination methods of the Betzier curves generate three-dimensional geometric shapes of impeller blades which are to be checked with a careful change of aerodynamic blade loadings. The impeller design is finally completed by the applications of three-dimensional compressible turbulent flow solvers, and the effect of minor change of design of the second-stage channel diffuser is also studied. All the aerodynamic design results are soon to the verified by component performance tests of prototype centrifugal compressors.