• Title/Summary/Keyword: Impedance tomography

Search Result 112, Processing Time 0.028 seconds

An Electrical Conductivity Reconstruction for Evaluating Bone Mineral Density : Simulation (골 밀도 평가를 위한 뼈의 전기 전도도 재구성: 시뮬레이션)

  • 최민주;김민찬;강관석;최흥호
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.261-268
    • /
    • 2004
  • Osteoporosis is a clinical condition in which the amount of bone tissue is reduced and the likelihood of fracture is increased. It is known that the electrical property of the bone is related to its density, and, in particular, the electrical resistance of the bone decreases as the bone loss increases. This implies that the electrical property of bone may be an useful parameter to diagnose osteoporosis, provided that it can be readily measured. The study attempted to evaluate the electrical conductivity of bone using a technique of electrical impedance tomography (EIT). It nay not be easy in general to get an EIT for the bone due to the big difference (an order of 2) of electrical properties between the bone and the surrounding soft tissue. In the present study, we took an adaptive mesh regeneration technique originally developed for the detection of two phase boundaries and modified it to be able to reconstruct the electrical conductivity inside the boundary provided that the geometry of the boundary was given. Numerical simulation was carried out for a tibia phantom, circular cylindrical phantom (radius of 40 mm) inside of which there is an ellipsoidal homeogenous tibia bone (short and long radius are 17 mm and 15 mm, respectively) surrounded by the soft tissue. The bone was located in the 15 mm above from the center of the circular cross section of the phantom. The electrical conductivity of the soft tissue was set to be 4 mS/cm and varies from 0.01 to 1 ms/cm for the bone. The simulation considered measurement errors in order to look into its effects. The simulated results showed that, if the measurement error was maintained less than 5 %, the reconstructed electrical conductivity of the bone was within 10 % errors. The accuracy increased with the electrical conductivity of the bone, as expected. This indicates that the present technique provides more accurate information for osteoporotic bones. It should be noted that tile simulation is based on a simple two phase image for the bone and the surrounding soft tissue when its anatomical information is provided. Nevertheless, the study indicates the possibility that the EIT technique may be used as a new means to detect the bone loss leading to osteoporotic fractures.

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF

The Effect of A-3826G Polymorphism of Uncoupling Protein-Ion Visceral Fat Area in Overweight Korean Women

  • Kim, Kil-Soo;Cha, Min-Ho;Kim, Jong-Yeol;Shin, Seung-Uoo;Yoon, Yoo-Sik
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.3
    • /
    • pp.279-284
    • /
    • 2005
  • Uncoupling protein-1 (UCP-1) plays a major role in thermogenesis, and has been implicated in the pathogenesis of obesity and metabolic disorders. The aim of this study was to estimate the effects of A-3826G polymorphism of UCP-1 gene on body fat distribution. Two hundred forty eight Korean female overweight subjects with BMI more than 25 kgfm2 participated in this study. The areas of abdominal subcutaneous and visceral fat of all subjects were measured from computed tomography cross sectional pictures of the umbilical region. Subcutaneous fat areas of upper and lower thigh were also measured. Body composition was measured by bio-impedance analysis, and serum concentrations of biochemical parameters, such as glucose, triglyceride, cholesterol etc, were also measured. Genotype of UCP-1 was analyzed by polymerase chain reaction (PCR) restriction fragment length polymorphism (RFLP) method. The frequencies of UCP-1 genotypes were AA type; $27.8\%,\;AG\;type;\;51.2\%\;and\;GG\;type;\;21.0\%,$ and the frequency of G allele was 0.47. Body weight, BMI, WHR, SBP, DBP and body compositions were not significantly different by UCP-1 genotype. Abdominal visceral fat area was significantly higher in AG and GG type compared with AA type (p=0.009), but subcutaneous fat areas were not significantly different by UCP-1 genotype. Among biochemical parameters, LDL cholesterol level was significantly higher in GG type compared with AA and AG types (p=0.033). Among all subjects, 121 subjects finished 1 month weight loss program containing hypocaloric diet and exercise. The reduction of body weight and BMI were lower in GG type compared with AA/AG type even though statistical significances were not found (p > 0.05). These results suggest that UCP-1 genotype has a significant effect on visceral fat accumulation among Korean female overweight subjects with BMI more than $25\;kg/m^2$.

The Usefulness of the Abdominal Computerized Tomography for the Diagnosis of Childhood Obesity and Its Correlation with Various Parameters of Obesity (소아 복부비만 진단을 위한 복부 전산화 단층 촬영의 유용성과 여러 지표와의 상관성 연구)

  • Shim, Yoon Hee;Cho, Su Jin;Rhyu, Jung Hyun;Hong, Young Mi
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.10
    • /
    • pp.1082-1089
    • /
    • 2005
  • Purpose : Abdominal obesity is encountered as a risk factor for cardiovascular diseases. However, the anthropometric cut-off value to estimate the cardiovascular risk, has not been suggested. This study was designed to find the relationship between the abdominal fat and various parameters of obesity to find the cardiovascular risk factors related to abdominal obesity and to establish practical methods to measure them. Methods : Twenty seven obese Korean adolescents of moderate to severe degree and 22 healthy adolescents were enrolled. The body mass index(BMI), arm circumference and skinfold thickness were measured. Furthermore, blood lipid, sugar, insulin and four different cytokines' levels were checked and the distribution of body composition was measured by bioelectrical impedance analysis. The subcutaneous and intra-abdominal fat thickness by abdominal ultrasonography(US) and the total and intra-abdominal fat area by abdominal computerized tomography(CT) were measured in the obese group. Results : The most accurate method to measure abdominal fat in children is abdominal CT and the fat mass measured by bioelectrical impedance was strongly correlated with it(r=0.954). It was also correlated with arm circumference, fat thickness measured by abdominal US, BMI, aspartate aminotransferase(AST), alanine aminotransferase(ALT) and triglyceride level. Conclusion : Abdominal CT is the most accurate method to measure intra-abdominal fat, and it can be replaced by abdominal US for cost effectiveness. The screening methods that can be used at school or in outpatient basis include bioelectrical impedance, waist/hip ratio, and arm circumference. The cardiovascular risk factors include leptin, triglyceride and insulin level.

A Study on Vestibulosaccular Hearing (전정구형낭 청력에 관한 연구)

  • Heo, Seung-Deok
    • Phonetics and Speech Sciences
    • /
    • v.4 no.3
    • /
    • pp.179-186
    • /
    • 2012
  • The aims of this study are to consider auditory physiological characteristics and to confirm audiological evaluation and interpretation in regards to cases of sensorineural hearing loss that observe an abnormal AB gap. Vestibulosaccular hearing occurs when there is an abnormally large air-bone gap (AB gap) in sensorineural hearing loss, also known as pure cochlear conductive hearing loss. Generally, an AB gap is caused by damage to the external and/or middle ear. In conductive hearing loss, loss of air condition hearing occurs due to a loss of resonance in the outer ear and/or impedance mismatching in the middle ear. Most of these types of hearing loss can be treated medically and surgically. However, there is no medical treatment for an AB gap in sensorineural hearing loss and hearing loss can worsen gradually or suddenly. In addition, many studies have reported that head trauma makes hearing loss even more serious. Therefore, in order to differentiate between conductive hearing losses, it is important to check whether or not there is an enlarged vestibular aqueduct by means of temporal bone computerized tomography and/or magnetic resonance imaging.

Design 2-Dimensional Digital Filter In Reconstruction Of EIT

  • Kang, Dong-Hoon;Kang, Byung-Chae;Kim, Ji-Hoon;Hwang, Sang-Pil;Kim, Jin-Yeop;Jang, Jae-Duck;Lee, Seung-Ha;Choi, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.36-39
    • /
    • 2004
  • Electrical impedance tomography (EIT) has been suffered from the severe ill-posedness which is caused by the inherent low sensitivity of boundary measurements to any changes of internal resistivity values. So, small noise occur unexpected reconstruction image. Generally in EIT system, if measured voltage includes noise, we can't find object location and resistivity values. In this paper, we propose digital filter for measured voltage in EIT. Newton-Raphson is the most..popular algorithm in EIT, but noise cause to blur image. We use Fourier transform (FT) in order to minimize the noise and design the filter. After filtering, result of reconstruction image is improved better than before filtering.

  • PDF

The Research about Distribution of Abdominal Fat in Obese Premenopausal Korean Women (폐경전 한국인 비만여성에서 복부 지방의 분획별 특성에 대한 임상연구)

  • Lee, A-Ra;Chung, Won-Suk;Song, Mi-Yeon
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.8 no.2
    • /
    • pp.25-35
    • /
    • 2008
  • Objectives This study was performed to find out the characters about distribution of abdominal fat(especially superficial and deep subcutaneous fat) in obese premenopausal Korean women. Methods 39 obese premenopausal women were recruited in 2008. Anthropometry and body impedance analysis have been done and abdominal fat distribution had been assessed by computed tomography scan at the level of L4-5. Blood test and questionnaires about depression, eating attitude and physical activity were underwent. Result Abdominal total fat area, subcutaneous fat area including superficial and deep were significantly correlated with anthropometry and BIA result while visceral fat was correlated only with age and waist circumference. In blood profile, only visceral fat area was correlated with HDL cholesterol and triglyceride. And there were no correlation among questionnaires and abdominal fat. There were no difference between superficial and deep subcutaneous fat. Conclusion Abdominal subcutaneous fat including superficial and deep did not have any correlation with heart risk factor. superficial and deep subcutaneous fat had no differences with each other and they did not show any correlation with visceral fat in obese perimenopausal Korean women.

  • PDF

Reconstruction of Magnetic Resonance Phase Images using the Compressed Sensing Technique (압축 센싱 기법을 이용한 MRI 위상 영상의 재구성)

  • Lee, J.E.;Cho, M.H.;Lee, S.Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.6
    • /
    • pp.464-471
    • /
    • 2010
  • Compressed sensing can be used to reduce scan time or to enhance spatial resolution in MRI. It is now recognized that compressed sensing works well in reconstructing magnitude images if the sampling mask and the sparsifying transform are well chosen. Phase images also play important roles in MRI particularly in chemical shift imaging and magnetic resonance electrical impedance tomography (MREIT). We reconstruct MRI phase images using the compressed sensing technique. Through computer simulation and real MRI experiments, we reconstructed phase images using the compressed sensing technique and we compared them with the ones reconstructed by conventional Fourier reconstruction technique. As compared to conventional Fourier reconstruction with the same number of phase encoding steps, compressed sensing shows better performance in terms of mean squared phase error and edge preservation. We expect compressed sensing can be used to reduce the scan time or to enhance spatial resolution of MREIT.

Boundary Element Analysis for Individual Acoustic Responses in Ear Canal of Korean Adults (한국인 성인남자의 개별 이도내 음향응답에 대한 경계요소 해석)

  • Lee, Dooho;Ahn, Tae-Soo;Son, Young-Seok;Shin, Jeeyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.226-233
    • /
    • 2013
  • Individual differences in head-related transfer functions(HRTFs) were calculated using boundary element(BE) models for three Korean adults. The BE models for the individuals were developed from the computerized tomography(CT) images of the individuals. The BE models were composed of the head, pinna, and ear canal. The frequency-dependent impedance boundary conditions were imposed on the skin, hair, and tympanic membrane. The HRTFs calculated from the individual BE models showed large difference above 2 kHz in magnitude and in the locations of peaks and valleys of the frequency spectrums, which should be considered in virtual auditory sound field. The identified individual differences in the HRTFs demonstrate that the developed BE models can be utilized successfully in order to obtain the HRTFs information of individuals.

SPECTROSCOPIC ADMITTIVITY IMAGING OF BIOLOGICAL TISSUES: CHALLENGES AND FUTURE DIRECTIONS

  • Zhang, Tingting;Bera, Tushar Kanti;Woo, Eung Je;Seo, Jin Keun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.2
    • /
    • pp.77-105
    • /
    • 2014
  • Medical imaging techniques have evolved to expand our ability to visualize new contrast information of electrical, optical, and mechanical properties of tissues in the human body using noninvasive measurement methods. In particular, electrical tissue property imaging techniques have received considerable attention for the last few decades since electrical properties of biological tissues and organs change with their physiological functions and pathological states. We can express the electrical tissue properties as the frequency-dependent admittivity, which can be measured in a macroscopic scale by assessing the relation between the time-harmonic electric field and current density. The main issue is to reconstruct spectroscopic admittivity images from 10 Hz to 1 MHz, for example, with reasonably high spatial and temporal resolutions. It requires a solution of a nonlinear inverse problem involving Maxwell's equations. To solve the inverse problem with practical significance, we need deep knowledge on its mathematical formulation of underlying physical phenomena, implementation of image reconstruction algorithms, and practical limitations associated with the measurement sensitivity, specificity, noise, and data acquisition time. This paper discusses a number of issues in electrical tissue property imaging modalities and their future directions.