• 제목/요약/키워드: Impact strain analysis

검색결과 306건 처리시간 0.027초

섬유금속 적층판의 구조적 성능 연구 (The study on structural performance of fiber metal laminates)

  • 김성준;김태욱;김승호
    • 항공우주기술
    • /
    • 제13권1호
    • /
    • pp.20-26
    • /
    • 2014
  • 본 논문에서는 충격하중과 잔류 에너지 등의 충격거동에 대한 영향을 확인하기 위하여 항복응력, 탄젠트 강성계수 및 파단 변형률을 변화시켰다. 그리고 섬유금속 적층판의 좌굴거동을 수치해석을 이용하여 수행하였다. 좌굴 성능을 비교하기 위하여 섬유금속 적층판과 알루미늄 판에 대해 인장 및 압축하중에 대한 여러 가지 경우의 해석을 수행하였다. 또한 정적 성능을 평가하기 위하여 박스 보 구조물의 정적해석을 수행하였다. 알루미늄 2024 박판과 유리섬유/에폭시 프리프레그로 만든 섬유금속 적층판에 대한 저속충격 해석을 수행하였다. 그리고 좌굴 및 정적해석 결과를 이용하여 섬유금속 적층판과 알루미늄의 성능을 비교하였다. 구조적 성능 비교를 위하여 동일한 무게의 알루미늄 2024 박판에 대한 해석을 수행하였다.

Evaluating damage scale model of concrete materials using test data

  • Mohammed, Tesfaye A.;Parvin, Azadeh
    • Advances in concrete construction
    • /
    • 제1권4호
    • /
    • pp.289-304
    • /
    • 2013
  • A reliable concrete constitutive material model is critical for an accurate numerical analysis simulation of reinforced concrete structures under extreme dynamic loadings including impact or blast. However, the formulation of concrete material model is challenging and entails numerous input parameters that must be obtained through experimentation. This paper presents a damage scale analytical model to characterize concrete material for its pre- and post-peak behavior. To formulate the damage scale model, statistical regression and finite element analysis models were developed leveraging twenty existing experimental data sets on concrete compressive strength. Subsequently, the proposed damage scale analytical model was implemented in the finite element analysis simulation of a reinforced concrete pier subjected to vehicle impact loading and the response were compared to available field test data to validate its accuracy. Field test and FEA results were in good agreement. The proposed analytical model was able to reliably predict the concrete behavior including its post-peak softening in the descending branch of the stress-strain curve. The proposed model also resulted in drastic reduction of number of input parameters required for LS-DYNA concrete material models.

Analysis methodology of local damage to dry storage facility structure subjected to aircraft engine crash

  • Almomani, Belal;Kim, Tae-Yong;Chang, Yoon-Suk
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1394-1405
    • /
    • 2022
  • The importance of ensuring the inherent safety and security has been more emphasized in recent years to demonstrate the integrity of nuclear facilities under external human-induced events (e.g. aircraft crashes). This work suggests a simulation methodology to effectively evaluate the impact of a commercial aircraft engine onto a dry storage facility. A full-scale engine model was developed and verified by Riera force-time history analysis. A reinforced concrete (RC) structure of a dry storage facility was also developed and material behavior of concrete was incorporated using three constitutive models namely: Continuous Surface Cap, Winfrith, and Karagozian & Case for comparison. Strain-based erosion limits for concrete were suitably defined and the local responses were then compared and analyzed with empirical formulas according to variations in impact velocity. The proposed methodology reasonably predicted such local damage modes of RC structure from the engine missile, and the analysis results agreed well with the calculations of empirical formulas. This research is expected to be helpful in reviewing the dry storage facility design and in the probabilistic risk assessment considering diverse impact scenarios.

관성효과가 고려된 강소성 유한요소법을 이용한 고속변형해석 (High-Velocity Deformation Analysis Using the Rigid-Plastic Finite Elemement Method Considering Inertia Effect)

  • 유요한;박근;양동열
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1562-1572
    • /
    • 1996
  • The rigid-plastic finite element formulation including the inertia force is derived and then the rigid-plastic finite elemnt program considering the inertia effect is developed. In order to consider the strain hardening, strain rate hardening and thermal softening effects which are frequentrly observed in high-velocity deformation phenomena, the Johnson-Cook constitutive odel is applied. The developed program is used to simulate two high-velocity deformation problemss ; rod impact test and hdigh-velocity compression precess. As a result of rod impact test simulation, it is found that the siulated result has a good agreement with the experimental observation. Through the high-velocity compression process simulation. it is also found that the accuracy of the simulated results is dependent upon the time increment size and mesh size.

원전 역지 밸브/배관 맞대기 용접부와 밸브 몸체의 취성 파괴에 미치는 잔류응력 및 Charpy V-노치 충격에너지의 영향 고찰 (Investigation on Effects of Residual Stresses and Charpy V-Notch Impact Energy on Brittle Fractures of the Butt Weld between Close Check Valve and Piping, and of the Valve Body in Nuclear Power Plants)

  • 김종성;김현수
    • 한국압력기기공학회 논문집
    • /
    • 제11권1호
    • /
    • pp.69-73
    • /
    • 2015
  • The study investigated effects of residual stresses and Charpy impact energy on brittle fractures of the butt weld between the valve and the piping, and of the valve body in nuclear power plants via a linear elastic fracture mechanics approach in the ASME B&PV Code, Sec.XI and finite element analysis. Weld residual stress in a butt weld between close check valve and piping, and residual stress in the valve due to casting process were assumed to be proportional to yield strength of base metal. Operating stresses in the butt weld and the valve body were calculated using approximate engineering formulae and finite element analysis, respectively. Applied stress intensity factors were calculated by assuming postulated cracks with specific sizes and then by substituting the residual stresses and the operating stresses into engineering formulae presented in the ASME B&PV Code, Sec.III. Plane strain fracture toughness was derived by using a correlation between Charpy V-notch impact energy and fracture toughness. Structural integrity of the weld and the body against brittle fracture was assessed by using the applied stress intensity factors, plane strain fracture toughness and the linear elastic fracture mechanics approach. As a result, it was identified that the structural integrity was maintained with decreasing the residual stress levels and increasing the Charpy V-notch impact energy.

가정변형률 솔리드 요소를 이용한 복합재 샌드위치 평판의 저속충격 해석 (Analysis of low-velocity impact on composite sandwich panels using an assumed strain solid element)

  • 박정;박훈철;윤광준;구남서;이재화
    • 한국항공우주학회지
    • /
    • 제30권7호
    • /
    • pp.44-50
    • /
    • 2002
  • 본 논문에서는 저속충격을 받는 복합재 샌드위치 평판의 동적 거동에 관한 연구를 수행하였다. 접촉 하중의 산출을 위해서 Hertz의 접촉법칙을 새로이 수정하는 방법을 제시했는데, 지수를 줄이는 방법과 심재의 두께방향의 탄성계수의 값을 줄여 등가 탄성계수를 계산하는 방법을 사용했다. 접촉하중을 산출하는 비선형 방정식은 Newton-Raphson 방법을 사용하여 계산하였고, 시간적분에는 Newmark-beta 방법을 사용하였다. 이러한 기법과 18절점 가정변형률 솔리드 요소를 적용하여 저속충격 해석용 유한요소 프로그램을 개발했다. 이 프로그램을 이용하여 다양한 복합재 샌드위치 평판의 저속충격에 대한 동적 거동을 해석하였다. 제안된 접촉법칙을 적용한 해석결과를 분석하여 볼 때, 대부분의 경우에서 접촉하중과 접촉시간이 실험결과와 대체로 일치함을 확인하였다.

Experimental research on dynamic response of red sandstone soil under impact loads

  • Wang, Tong;Song, Zhanping;Yang, Jianyong;Wang, Junbao;Zhang, Xuegang
    • Geomechanics and Engineering
    • /
    • 제17권4호
    • /
    • pp.393-403
    • /
    • 2019
  • The cycling impact test of red sandstone soil under different axial pressure and different impact loads are conducted to reveal the mechanical properties and energy consumption mechanism of red sandstone soil with static-dynamic coupling loading. The results show that: Under the action of different axial pressure and different impact loads, the peak stress of the specimen increases, and then tends to be stable with the times of impact. With the increase of impact times, the specific energy absorption value of the red sandstone soil specimen is increased first and then gentle development trend. When the impact loads are certain, the larger the axial pressure is, the smaller the peak value of energy absorption, which indicates that the energy utilization rate is not high under the condition of large axial pressure. Through the analysis of energy utilization, it is found that the smaller the impact load, the higher the energy utilization rate. The greater the axial pressure, the lower the energy utilization rate. when the axial pressure is large, the impact loads corresponding to the maximum values of reflectivity, transmissivity and absorptivity are the same. The relationship between reflectivity and transmissivity is negatively correlated.

An interpretable machine learning approach for forecasting personal heat strain considering the cumulative effect of heat exposure

  • Seo, Seungwon;Choi, Yujin;Koo, Choongwan
    • 한국건설관리학회논문집
    • /
    • 제24권6호
    • /
    • pp.81-90
    • /
    • 2023
  • Climate change has resulted in increased frequency and intensity of heat waves, which poses a significant threat to the health and safety of construction workers, particularly those engaged in labor-intensive and heat-stress vulnerable working environments. To address this challenge, this study aimed to propose an interpretable machine learning approach for forecasting personal heat strain by considering the cumulative effect of heat exposure as a situational variable, which has not been taken into account in the existing approach. As a result, the proposed model, which incorporated the cumulative working time along with environmental and personal variables, was found to have superior forecast performance and explanatory power. Specifically, the proposed Multi-Layer Perceptron (MLP) model achieved a Mean Absolute Error (MAE) of 0.034 (℃) and an R-squared of 99.3% (0.933). Feature importance analysis revealed that the cumulative working time, as a situational variable, had the most significant impact on personal heat strain. These findings highlight the importance of systematic management of personal heat strain at construction sites by comprehensively considering the cumulative working time as a situational variable as well as environmental and personal variables. This study provided a valuable contribution to the construction industry by offering a reliable and accurate heat strain forecasting model, enhancing the health and safety of construction workers.

플립칩의 매개변수 변화에 따른 보드레벨의 동적신뢰성평가 (Dynamic Reliability of Board Level by Changing the Design Parameters of Flip Chips)

  • 김성걸;임은모
    • 한국생산제조학회지
    • /
    • 제20권5호
    • /
    • pp.559-563
    • /
    • 2011
  • Drop impact reliability assessment of solder joints on the flip chip is one of the critical issues for micro system packaging. Our previous researches have been showing that new solder ball compositions of Sn-3.0Ag-0.5Cu has better mechanical reliability than Sn-1.0Ag-0.5Cu. In this paper, dynamic reliability analysis using Finite Element Analysis (FEA) is carried out to assess the factors affecting flip chip in drop simulation. The design parameters are size and thickness of chip, and size, pitch and array of solder ball with composition of Sn1.0Ag0.5Cu. The board systems by JEDEC standard including 15 chips, solder balls and PCB are modeled with various design parameter combinations, and through these simulations, maximum yield stress and strain at each chip are shown at the solder balls. It is found that larger chip size, smaller chip array, smaller ball diameter, larger pitch, and larger chip thickness have bad effect on maximum yield stress and strain at solder ball of each chip.

층 구조를 갖는 강섬유 보강 고강도 콘크리트 보의 충격저항성능 향상 (Enhancement of Impact Resistance of Layered Steel Fiber Reinforced High Strength Concrete Beam)

  • 류두열;민경환;이진영;윤영수
    • 콘크리트학회논문집
    • /
    • 제24권4호
    • /
    • pp.369-379
    • /
    • 2012
  • 비산물체의 충돌 및 폭발, 테러 등의 극한하중에 의한 구조물의 붕괴는 재산상의 손실뿐만 아니라 다수의 인명피해를 유발한다. 일반적으로 콘크리트는 타 건설재료에 비해 충격 및 폭발 하중에 우수한 저항성능을 지니고 있다고 알려져 있으나, 준-정적(quasi-static)하중과는 달리 높은 변형률 속도를 갖는 극한하중을 고려하지 않고 설계된 기존의 콘크리트 구조물은 예상치 못한 극한하중에 노출될 경우 상당히 위험할 수 있다. 이 연구에서는 콘크리트 보의 충격저항성능을 향상시키기 위해 길이 30 mm의 번들형 양단 hooked type의 강섬유를 전체 부피의 0%에서 1.5%까지 혼입하여 정하중 및 충격하중 휨 실험을 수행하고, 그 성능을 평가하였다. 실험 결과 강섬유의 혼입률을 증가시킬 경우 정하중뿐만 아니라 충격하중에서도 휨강도와 연성 등 휨 저항성능이 크게 향상되는 경향을 보였다. 강섬유를 인장부에 집중적으로 혼입한 층 구조 콘크리트 보의 경우에는 동일한 양의 섬유를 보 전체에 타설한 시편에 비해 휨 저항성능이 향상되는 것으로 나타났다. 또한, 강섬유 보강 콘크리트의 재료적 비선형성을 고려하여 단자유도계(sing degree of freedom, SDOF) 시스템의 해석 알고리즘을 구성하고 실험 결과와 비교하였으며, 비교적 정확하게 최대 처짐을 예측하는 것으로 나타났다.