• Title/Summary/Keyword: Impact speed

Search Result 1,533, Processing Time 0.026 seconds

A Study on Crash Analysis of Vehicle and Guardrail using a LS-DYNA Program (LS-DYNA 프로그램을 이용한 차량과 가드레일의 충돌해석에 관한 연구)

  • Kwon, O-Hyun;Baek, Se-Ryong;Yoon, Jun-Kyu;Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.179-186
    • /
    • 2016
  • A study is to research crash barriers for vehicles that prevent road breakaway of vehicles and protect car passengers and pedestrians as absorbing impulse. Protection performance tests on vehicle passengers were simulated by using a LS-DYNA program. Through repetitive simulation on various speed and angles, passenger protection performance according to different impact condition was contemplated. Variable setting for the simulation was calculated as the mean weight of domestic car sales. By analyzing NASS (National Automotive Sampling System) of NHTSA (National Highway Traffic Safety Administration) of the U.S., the actual speed and collision angle section of accidents were computed. As a result, we confirmed that THIV (Theoretical Head Impact Velocity) and PHD (Post-impact Head Deceleration) are increased according to the impact speed and angle. Also, when the vehicle hit the guardrail post, we could be confirmed that the passenger protection performance greatly decreased.

Impact Test for Measurement of the Carbody Bending Modes of Railway Vehicle (철도차량 차체 굽힘모드 측정을 위한 충격시험)

  • Shin, Bum-Sik;Choi, Yeon-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.423-428
    • /
    • 2012
  • As the speed of high speed train increases, the prediction of ride comfort becomes important. The exciting frequencies due to rail irregularity in high-speed train closes to the second and third natural frequencies of the carbody. The dynamic characteristics of railway vehicles should be checked by modal analysis numerically and experimentally. In this study the bending test for railway vehicle is reviewed and the impact test is suggested to find the natural frequencies and the mode shapes of the carbody. The validity of the impact test is checked with the test for a sample plate which reflects the aspect ratio of the original carbody. The bending test by the impact and the displacement methods of JIS E7105 for a prototype carbody were done in the field and compared. The results show that the impact test can find more accurate natural frequencies and the mode shapes of the carbody than those of the displacement method.

Parallel Computing Strategies for High-Speed Impact into Ceramic/Metal Plates (세라믹/금속판재의 고속충돌 파괴 유한요소 병렬 해석기법)

  • Moon, Ji-Joong;Kim, Seung-Jo;Lee, Min-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.527-532
    • /
    • 2009
  • In this paper simulations for the impact into ceramics and/or metal materials have been discussed. To model discrete nature for fracture and damage of brittle materials, we implemented cohesive-law fracture model with a node separation algorithm for the tensile failure and Mohr-Coulomb model for the compressive loading. The drawback of this scheme is that it requires a heavy computational time. This is because new nodes are generated continuously whenever a new crack surface is created. In order to reduce the amount of calculation, parallelization with MPI library has been implemented. For the high-speed impact problems, the mesh configuration and contact calculation changes continuously as time step advances and it causes unbalance of computational load of each processor. Dynamic load balancing technique which re-allocates the loading dynamically is used to achieve good parallel performance. Some impact problems have been simulated and the parallel performance and accuracy of the solutions are discussed.

A Study on Impact Damage Characteristics of the Window Glass for High Speed Train (고속열차 객실 유리창 충격파손특성 비교 연구)

  • Jeon, Chang-Sung;Kim, Young-Guk;Yun, Su-Hwan;Kwon, Hyeok-Bin;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.3
    • /
    • pp.217-223
    • /
    • 2012
  • This study describes an experimental investigation about the impact damage characteristics of various types of high speed train window glass. Kinds of impact test standards for glass were studied and impact test considering scattering ballast were developed. Windows with external impact side made with annealed, heat strengthened and tempered glasses are likely to be broken by sharp tipped falling object. Broken shape of annealed glass is like line in part and that of heat strengthened glass is line on the whole. Tempered glass is destroyed to pieces. The change of tip type from sharp to blunt makes the higher destroyed level. Tempered glass has higher strength than annealed glass with blunt tip. When the protective films are attached to glasses, strength against destruction increases. In case of real ballast test, glasses without protective films were destroyed, but those with protective films are hard to be broken.

Copula-ARMA Model for Multivariate Wind Speed and Its Applications in Reliability Assessment of Generating Systems

  • Li, Yudun;Xie, Kaigui;Hu, Bo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.421-427
    • /
    • 2013
  • The dependence between wind speeds in multiple wind sites has a considerable impact on the reliability of power systems containing wind energy. This paper presents a new method to generate dependent wind speed time series (WSTS) based on copulas theory. The basic feature of the method lies in separating multivariate WSTS into dependence structure and univariate time series. The dependence structure is modeled through the use of copulas, which, unlike the cross-correlation matrix, give a complete description of the joint distribution. An autoregressive moving average (ARMA) model is applied to represent univariate time series of wind speed. The proposed model is illustrated using wind data from two sites in Canada. The IEEE Reliability Test System (IEEE-RTS) is used to examine the proposed model and the impact of wind speed dependence between different wind regimes on the generation system reliability. The results confirm that the wind speed dependence has a negative effect on the generation system reliability.

An Analysis of the Importance of Accessibility for High Speed Railway : Stated-Preference Approach (고속철도에 있어서 접근도의 중요성 분석에 관한 연구)

  • Park, D.R.;Nam, K.C.
    • Journal of Korean Port Research
    • /
    • v.8 no.1
    • /
    • pp.49-63
    • /
    • 1994
  • The introduction of high speed railway system a significant impact on the conventional inter-urban transport systems by inducing a significant traffic from the existing modes as well as generating a new traffic. It is also closely related to intra-urban transport systems as the inter-urban traffic has its origin and destination in a city. In the context of mode choice, for high speed transport systems, it has been argued that the accessibility is the most important attribute conceived by users. Thus this study attempts to analysis the importance of the accessibility for the planned high speed railway systems particularly with respect to the location of Busan Station. For this Stated-Preference approach, which is considered appropriate for such study, is adopted, and disaggregate binary logit models for mode choice between the high speed railway and air service in Busan-Seoul corridor are developed. The elasticities for cost and service variables are also derived. The results disclose that cost is the most important which is inconsistent with most previous studies ; accessibility has considerable impact on the choice ; and frequency however has a little impacts. Concerning location of the high speed railway station the results suggest that the longer the access distance is, the more important the accessibility is. This implies that the connection of reliable access transport services such as underground are essential between the terminal and urban center.

  • PDF

The Impact of High-Speed Railway on Regional Economy and Balanced Development in China: Focused on Hurong Line(Shanghai-Chengdu) (고속철도가 중국의 지역경제와 균형발전에 미치는 영향에 대한 연구 - 호용선(상해-성도) 개통지역을 중심으로 -)

  • Zhang, He-xiang;Kang, Jeong-ku
    • Journal of the Korean Regional Science Association
    • /
    • v.35 no.4
    • /
    • pp.19-32
    • /
    • 2019
  • Since the 2000s, China has been trying to develop the mid- and western regions and reduce regional disparity between the eastern region and the others by construction of the eight HSR corridors known as 4+4. The high-speed railway is known to have a positive impact on regional economic development by improving accessibility between regions. However, some studies point out that the high-speed railways could worsen regional imbalances. The purpose of this study is to examine the impact of the high-speed railway on regional economic growth and balanced development in China, using the beta-convergence model. In particular, we focused on how the effects of high-speed trains on regional economic development varied depending on the level of development. The analysis was conducted centering on the Shanghai-Chengdu line which is connecting eastern, central and western regions with different levels of development.

Assessment on the Possibility of Increase of SB5-B Small Car Impact Velocity (SB5-B 소형차 충돌속도의 상향 가능성 평가)

  • Kim, Kee-Dong;Ko, Man-Gi;Joo, Jae-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.3013-3022
    • /
    • 2013
  • Satisfying the large car impact condition of the high level SB5-B for "SMART Highway" longitudinal barriers, the possibility of increase of the small car impact velocity from 120km/h to 130km/h was investigated. Through computer simulation using input parameters calibrated to full-scale crash test results, various longitudinal semi-rigid barrier models were improved such that for the small car impact speed of 120km/h the change of longitudinal and transverse velocities of the impact vehicle can satisfy the THIV limit. The barrier model determined through this process satisfied the performance assessment criteria for SB5-B impact conditions. Varying the wing angle of slip block-outs of the passed barrier model, the possibility of increase of the small car impact velocity was investigated by FEA and a full-scale crash test was conducted. It has been shown that the possibility to increase the small car impact speed to 130km/h is high if the test facility condition for 130km/h impact velocity is better equipped.

Particle Morphology Change and Different Experimental Condition Analysis during Composites Fabrication Process by Conventional Ball Mill with Discrete Element Method(DEM) Simulation (전동볼밀을 이용한 금속기반 복합재 제조공정에서 분쇄매체차이에 대한 입자형상변화와 DEM 시뮬레이션 해석)

  • Ichinkhorloo, Batchuluun;Bor, Amgalan;Uyanga, Batjargal;Lee, Jehyun;Choi, Heekyu
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.611-622
    • /
    • 2016
  • Particle morphology change and different experimental condition analysis during composite fabrication process by traditional ball milling with discrete element method (DEM) simulation were investigated. A simulation of the three dimensional motion of balls in a traditional ball mill for research on the grinding mechanism was carried out by DEM simulation. We studied the motion of the balls, the ball behavior energy and velocity; the forces acting on the balls were calculated using traditional ball milling as simulated by DEM. The effect of the operational variables such as the rotational speed, ball material and size on the flow velocity, collision force and total impact energy were analyzed. The results showed that increased rotation speed with interaction impact energy between balls and balls, balls and pots and walls and balls. The rotation speed increases with an increase of the impact energy. Experiments were conducted to quantify the grinding performance under the same conditions. Furthermore, the results showed that ball motion affects the particle morphology, which changed from irregular type to plate type with increasing rotation speed. The evolution was also found to depend on the impact energy increase of the grinding media. These findings are useful to understand and optimize the particle motion and grinding behavior of traditional ball mills.

Factors Affecting Performance of Rotary Impact-Type Threshers for Sesame and Perilla Harvesting

  • Pang, Yeoun Gyu;Kim, Sang Hun;Jun, Hyeon-Jong
    • Journal of Biosystems Engineering
    • /
    • v.43 no.3
    • /
    • pp.185-193
    • /
    • 2018
  • Purpose: The purpose of this study was to analyze the performance factors of a rotary impact-type thresher to develop a sesame and perilla thresher, specifically to analyze the cut length of the stems and the threshing rates based on the relationship between the blade velocity and feeding speed. Methods: The materials were dried within a range of 12.3-13.0% to test the impact cut by bending. The cut lengths of the perilla and sesame stems were categorized in 6 ranges (~7.0, 7.1-10.0, 10.1-13.0, 13.1-16.0, 16.1-20.0, 20.1- (cm)). For testing the cut length and threshing rate, the upward-rotating blade velocity was varied as 11.0 m/s, 13.5 m/s, and 22.3 m/s. Feeding speeds were changed from 0.1 m/s to 2.2 m/s by the inverter connected to the feed motor. The feed rate and threshing rates without cover-casing were evaluated with the factors of thresher testing. Results: The mean cut length of the stem decreased as the blade velocity increased and/or the feeding speed decreased. As the feed rate increased up to 17.5 g/s, the cut length distributions showed no significant difference. The threshing rate was 98.9% for sesame, and flexible according to the blade velocity and feeding speed of the perilla. Conclusion: Feeding material too fast could produce longer cut stem segments, therefore, a feeding speed less than 2.2 m/s is recommended. A blade velocity of 13.5 m/s is preferable for both sesame and perilla with regard to cut length and threshing rate.