• Title/Summary/Keyword: Impact pulse

Search Result 181, Processing Time 0.023 seconds

Drop reliability evaluation of Sn-3.0Ag-0.5Cu solder joint with OSP and ENIG surface finishes (OSP.ENIG 표면 처리된 기판과 Sn-3.0Ag-0.5Cu 솔더 접합부의 낙하충격 신뢰성 평가)

  • Ha, Sang-Ok;Ha, Sang-Su;Lee, Jong-Bum;Yoon, Jeong-Won;Park, Jai-Hyun;Chu, Yong-Chul;Lee, Jun-Hee;Kim, Sung-Jin;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.1
    • /
    • pp.33-38
    • /
    • 2009
  • The use of portable devices has created the need for new reliability criterion of drop impact tests because of the tendency to accidentally drop in the use of these devices. The effects of different PCB surface finishes (organic solderability preservative (OSP) and electroless nickel immersion gold (ENIG)) and high temperature storage (HTS) test on the drop reliability were studied. Various drop test conditions were used to evaluate a drop reliability of assemblies to endure such impact and shock load. In the case of the as-reflowed samples (no HTS test), the SAC/OSP boards exhibited a better drop impact reliability than that of SAC/ENIG. However, the reverse was true if HTS test is performed. In addition, significant decrease of drop reliability was observed for both SAC/ENIG and SAC/OSP assemblies after HTS test. It was also observed that the thickness of intermetallic compound layer do play an important role in the brittle fracture of drop test.

  • PDF

Experimental study on structural integrity assessment of utility tunnels using coupled pulse-impact echo method (결합된 초음파-충격 반향 기법 기반의 일반 지하구 구조체의 건전도 평가에 관한 실험적 연구)

  • Jin Kim;Jeong-Uk Bang;Seungbo Shim;Gye-Chun Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.479-493
    • /
    • 2023
  • The need for safety management has arisen due to the increasing number of years of operated underground structures, such as tunnels and utility tunnels, and accidents caused by those aging infrastructures. However, in the case of privately managed underground utility ducts, there is a lack of detailed guidelines for facility safety and maintenance, resulting in inadequate safety management. Furthermore, the absence of basic design information and the limited space for safety assessments make applying currently used non-destructive testing methods challenging. Therefore, this study suggests non-destructive inspection methods using ultrasonic and impact-echo techniques to assess the quality of underground structures. Thickness, presence of rebars, depth of rebars, and the presence and depth of internal defects are assessed to provide fundamental data for the safety assessment of box-type general underground structures. To validate the proposed methodology, different conditions of concrete specimens are designed and cured to simulate actual field conditions. Applying ultrasonic and impact signals and collecting data through multi-channel accelerometers determine the thickness of the simulated specimens, the depth of embedded rebar, and the extent of defects. The predicted results are well agreed upon compared with actual measurements. The proposed methodology is expected to contribute to developing safety diagnostic methods applicable to general underground structures in practical field conditions.

Impact Assessment of Climate Change on Extreme Rainfall and I-D-F Analysis (기후변화가 극한강우와 I-D-F 분석에 미치는 영향 평가)

  • Kim, Byung-Sik;Kim, Bo-Kyung;Kyung, Min-Soo;Kim, Hung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.4
    • /
    • pp.379-394
    • /
    • 2008
  • Recently, extreme precipitation events beyond design capacity of hydraulic system have been occurred and this is the causes of failure of hydraulic structure for flood prevention and of severe flood damage. Therefore it is very important to understand temporal and spatial characteristics of extreme precipitation events as well as expected changes in extreme precipitation events and distributional characteristics during design period under future climate change. In this paper, climate change scenarios were used to assess the impacts of future climate change on extreme precipitation. Furthermore, analysis of future extreme precipitation characteristics and I-D-F analysis were carried out. This study used SRES B2 greenhouse gas scenario and YONU CGCM to simulate climatic conditions from 2031 to 2050 and statistical downscaling method was applied to establish weather data from each of observation sites operated by the Korean Meteorological Administration. Then quantile mapping of bias correction methods was carried out by comparing the simulated data with observations for bias correction. In addition Modified Bartlett Lewis Rectangular Pulse(MBLRP) model (Onof and Wheater, 1993; Onof 2000) and adjust method were applied to transform daily precipitation time series data into hourly time series data. Finally, rainfall intensity, duration, and frequency were calculated to draw I-D-F curve. Although there are 66 observation sites in Korea, we consider here the results from only Seoul, Daegu, Jeonju, and Gwangju sites in this paper. From the results we found that the rainfall intensity will be increased and the bigger intensity will be occurred for longer rainfall duration when we compare the climate conditions of 2030s with present conditions.

Thermomechanical Effect on the Water Wet Dental Hard Tissue by the Q-switched Er : YAG Laser

  • Y. H. Kwon;Ky0-han Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.231-236
    • /
    • 1999
  • Understanding the exgenous water induced thermomechanical effect on the dental hard tissue by the Q-switched Er:YAG laser (1-$mutextrm{s}$-long pulse width) has an important impact on the further understanding of the free-running Er:YAG laser (250-$mutextrm{s}$-long pulse width) ablation on the dental gard tissue because one macroscopic effect in the free-running laser is an accumulation of microscopic effects we investigated in this study. The Q-switched Er:YAG laser with exogenous water on the tooth enhanced ablation rate compared to the case of no water on the tooth. The frequency of exogenous-water jet on the tooth has affected the ablation rate in such a way that as we dispensed water drops less frequently we could get more enhanced ablation rate. The amplitude of the recoil pressure depends on the tooth surface conditions such that as surfaces wet, and as the volume of the exogenous water drop increased, the amplitude of the recoil pressure increased also. From this study we realized that the 1 $mutextrm{s}$ long pulsed induced thermomechanical effect provides us useful information for the understanding of the free-running Er:YAG laser induced ablation with exogenous water.

  • PDF

Intraosseous anesthesia in symptomatic irreversible pulpitis: Impact of bone thickness on perception and duration of pain

  • Nilius, Manfred;Mueller, Charlotte;Nilius, Minou Helene;Haim, Dominik;Leonhardt, Henry;Lauer, Guenter
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.20 no.6
    • /
    • pp.367-375
    • /
    • 2020
  • Background: Intraosseous anesthesia (IO) allows the anesthetic solution to be injected directly into the cancellous bone. The anesthetic solution immediately reaches the periapical region, and thus the axonal area of the nerve, where it can temporarily disable the sodium pump. The effect is felt almost without any time delay, and only a small amount of anesthetic solution is required. Methods: This study aims to investigate the efficacy of IO using the AnestoⓇ device after infiltration anesthesia (IA) and/or inferior alveolar nerve block anesthesia (IANB) failed to work in symptomatic irreversible pulpitis (hot tooth). The 33 patients included in the study were treated additionally with 1.7 ml articaine hydrochloride with 1:100,000 epinephrine hydrochloride (UltracainⓇ D-S, Sanofi-Aventis, Frankfurt, Germany) IO. Results: The electrical pulp test showed that 95.76% of the volunteers reacted positively to the combination of IANB or IA with the IO. In women, the additive IO was effective at 97.22%. In men, the IO led to pain elimination in 94.00% of cases. The duration of the IO was less than a quarter of an hour (13.03 min). The IO worked longer in women than in men (13.61 min vs. 12.33 min). Overall, more than every third tooth that needed trepanation was located in the posterior area of the mandible (36.4%). Treatment of hot teeth in this area was associated with an increased pulse rate and increased residual pain. There was a moderate correlation (Spearman-Rho [IRI] = 0.280) between the Visual Analog Scale (VAS) score and bone density, and a significant correlation (IRI = 0.612) between subjective residual pain and bone width. The IO resulted in a moderate, transient increase in the pulse rate by approximately 20 bpm. This is similar to the temporary increase in heart rate after conventional anesthesia techniques in non-preloaded patients and can be considered clinically irrelevant. Conclusion: IO with the AnestoⓇ device as an extension and deepening of local pain elimination is recommended for the treatment of hot teeth.

Thermal Comfort and the Physiological and Psychological Effects of Spending Time in Broad-Leaved Forests in Summers (여름철 활엽수림에서의 휴식이 온열환경 쾌적성 및 인체의 생리ᐧ심리적 반응에 미치는 영향)

  • Juhyeon Kim;Injoon Song;Choyun Kim;Dawou Joung;Yunjeong Yi;Bum-Jin Park;Chorong Song
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.544-553
    • /
    • 2023
  • The purpose of this study was to reveal the thermal comfort and physiological and psychological effects of spending time in broad-leaved forests in suumer. Thirty-one university students (with an average age of 21.4 ± 2.1 years) participated in the study, and a within-subjects experimental design methodology was used. The participants moved to an experimental site (with a crown closure of 76.6%) or a control site (25.9%), sat on a chair to eliminate the impact of movement, and rested for 5 minutes with closed eyes. At this time, thermal comfort, heart rate variability, heart rate, and forehead temperature were continuously measured. After that, blood pressure and pulse rate were measured, and a subjective evaluation was conducted. As a result, spending time at an experimental site showed a statistically significant decrease in the predicted mean vote and the percentage of dissatisfied values, enhancement of parasympathetic nerve activity, decrease of forehead temperature, diastolic blood pressure, heart rate, pulse rate, and improvement of personal thermal sensation (thermal sensation vote and comfort sensation vote). In conclusion, it was found that a forest with high crown closure reduces thermal stress and induces physiological and psychological relaxation.

A Study on the Image Change Using Twinkle Artifact Images and Phantom according to Calcification-Inducing Environment in Breast Ultrasonography (유방 초음파 검사에서 석회화 유발 환경에 따른 반짝 허상과 팸텀을 활용한 영상 변화에 관한 연구)

  • Cheol-Min Jeon
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.751-759
    • /
    • 2023
  • Breast ultrasonography is difficult to image in fatty breasts and to find micro-calcification, but the discovery of micro-calcification is very important for breast cancer screening. Among the color Doppler artifact of ultrasound, twinkle artifact mainly occur on strong reflectors such as stones or calcification in images, and evaluation methods using them are clinically being used. In this study, we are conducting experiments on the color Doppler settings of ultrasound equipment, such as repetition frequency, ensemble, persist, wall filtering, smoothing, linear density, and dissociation value, by producing a breast simulation phantom using the largest amount of calcium phosphate among breast implants. The purpose of this study was to improve the contrast of twinkle artifact in breast ultrasound examinations and to maximize their use in clinical practice. As a result, the pulse repetition frequency occurred in the range of 3.6 kHz to 7.2 kHz, and did not occur above 10.5 kHz. For ensembles, twinkle artifact occurred in all sizes of calcification under low conditions, and in threshold settings, the twinkle artifact increased slightly only under 80 to 100 conditions, and did not occur in 1 mm size calcification. Persist, wall filter, smoothing, and line density settings did not have much meaning in the setting variable because conditions did not increase by condition, and pulse repetition frequency, ensemble, and thresholds had the greatest impact on the twinkling artifact image. This study is expected to help examiners select optimal conditions to effectively increase twinkle artifact by adjusting color Doppler settings.

Evaluation of Microcracks in Thermal Damaged Concrete Using Nonlinear Ultrasonic Modulation Technique (비선형 초음파 변조 기법을 이용한 열손상 콘크리트의 미세균열 평가)

  • Park, Sun-Jong;Yim, Hong Jae;Kwak, Hyo-Gyung
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.651-658
    • /
    • 2012
  • This paper concentrates on the evaluation of microcracks in thermal damaged concrete on the basis of the nonlinear ultrasonic modulation technique. Since concrete structure exposed to high temperature accompanies the development of microcracks due to the physical and chemical changes from temperature and exposed time, the adoption of nonlinear approach is required. Instead of using the conventional ultrasonic nondestructive methods which have the limitation in evaluating excessive microcracks, accordingly, a nonlinear ultrasonic modulation method which shows better sensitivity in quantifying microcracks is introduced. Upon the analysis for the modulation of ultrasonic wave and low frequency impact to measure the nonlinearity parameter, which can be used as an indicator of thermal damage, the verification processes for the introduced technique are followed: SEM investigation and permeable pore space test are performed to characterize thermally induced microcracks in concrete, and ultrasonic pulse velocity tests are performed to confirm the outstanding sensitivity of nonlinear ultrasonic modulation technique. In advance, compressive strength of thermal damaged concrete is measured to represent the effect of microcracks on performance degradation. Correlation studies between experimental data and measured data show that nonlinear ultrasonic modulation technique can effectively be used to quantify thermally induced microcracks, and to estimate the compressive strength of thermally damaged concrete.

The Effect of Dynamic Balance on Cyber Motion Sickness of Full Immersion Virtual Reality (완전 몰입형 가상현실로 인한 사이버 멀미가 동적 균형에 미치는 영향)

  • Kim, Na-Eun;Kim, Yu-lim;Moon, Sang-cheol;Lee, Dong-hung;Lim, Ho-jeong;Jang, Eun-kyung;Hung, Ji-eun;Kang, Jong-ho
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.1
    • /
    • pp.131-138
    • /
    • 2018
  • The purpose of the study was to explore whether the Cyber Motion sickness used VR causes a change in the dynamic balance and fall. For 39 people who voluntarily participated in this study, this study measured the motion sickness questionnaires, the heart rate and stability of limit test in BioRescue. The study used Samsung Gear VR and applied the games to the To the homeland. The game proceeded 20minutes. Although the value of the stability after a VR application is slightly reduced, it did not reach statistical significance. The motion sickness questionnaires increased, and it had a statistical significant impact. Also Heart rate increased and it had a statistically significant impact. A virtual reality game affect for getting motion sickness but it did not affect the dynamic balance. So, cyber motion sickness caused by virtual reality wear does not result in decreased balance and falls.

A Study on the Damage Assesment of Artificial Brittle Materials subjected to Impact Leading (충격하중을 받은 인공취성재료의 손상평가에 관한 연구)

  • Cho, Sang-Ho;Jo, Seul-Ki;Cheon, Dae-Sung;Synn, Joong-Ho;Yang, Hyung-Sik;Kim, Seung-Kon
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.457-464
    • /
    • 2008
  • Dynamic fracture mechanism of rock is important to improve rapid excavation method and develop precise damage assesment of rock mass in the vicinity of an excavation. In order to investigate dynamic fracture characteristics and dynamic damage mechanism of brittle materials, this study employed pulse shape-controlled Split Hopkinson Pressure Bar (SHPB) system. The P- and S-wave velocities of the tested samples were measured before and after tests to examine damage of the samples. The decay ratios of the Ultrasonic wave velocities increased with impart velocities and the samples which have lower strength showed higher permanent strain significantly.