• Title/Summary/Keyword: Impact damages

Search Result 303, Processing Time 0.026 seconds

Damage identification in a wrought iron railway bridge using the inverse analysis of the static stress response under rail traffic loading

  • Sidali Iglouli;Nadir Boumechra;Karim Hamdaoui
    • Smart Structures and Systems
    • /
    • v.32 no.3
    • /
    • pp.153-166
    • /
    • 2023
  • Health monitoring of civil infrastructures, in particular, old bridges that are still in service, has become more than necessary, given the risk that a possible degradation or failure of these infrastructures can induce on the safety of users in addition to the resulting commercial and economic impact. Bridge integrity assessment has attracted significant research efforts over the past forty years with the aim of developing new damage identification methods applicable to real structures. The bridge of Ouled Mimoun (Tlemcen, Algeria) is one of the oldest railway structure in the country. It was built in 1889. This bridge, which is too low with respect to the level of the road, has suffered multiple shocks from various machines that caused considerable damage to its central part. The present work aims to analyze the stability of this bridge by identifying damages and evaluating the damage rate in different parts of the structure on the basis of a finite element model. The applied method is based on an inverse analysis of the normal stress responses that were calculated from the corresponding recorded strains, during the passage of a real train, by means of a set of strain gauges placed on certain elements of the bridge. The results obtained from the inverse analysis made it possible to successfully locate areas that were really damaged and to estimate the damage rate. These results were also used to detect an excessive rigidity in certain elements due to the presence of plates, which were neglected in the numerical reference model. In the case of the continuous bridge monitoring, this developed method will be a very powerful tool as a smart health monitoring system, allowing engineers to take in time decisions in the event of bridge damage.

Flood Risk Estimation Using Regional Regression Analysis (지역회귀분석을 이용한 홍수피해위험도 산정)

  • Jang, Ock-Jae;Kim, Young-Oh
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.71-80
    • /
    • 2009
  • Although desire for living without hazardous damages grows these days, threats from natural disasters which we are currently exposed to are quiet different from what we have experienced. To cope with this changing situation, it is necessary to assess the characteristics of the natural disasters. Therefore, the main purpose of this research is to suggest a methodology to estimate the potential property loss and assess the flood risk using a regional regression analysis. Since the flood damage mainly consists of loss of lives and property damages, it is reasonable to express the results of a flood risk assessment with the loss of lives and the property damages that are vulnerable to flood. The regional regression analysis has been commonly used to find relationships between regional characteristics of a watershed and parameters of rainfall-runoff models or probability distribution models. In our research, however, this model is applied to estimate the potential flood damage as follows; 1) a nonlinear model between the flood damage and the hourly rainfall is found in gauged regions which have sufficient damage and rainfall data, and 2) a regression model is developed from the relationship between the coefficients of the nonlinear models and socio-economic indicators in the gauged regions. This method enables us to quantitatively analyze the impact of the regional indicators on the flood damage and to estimate the damage through the application of the regional regression model to ungauged regions which do not have sufficient data. Moreover the flood risk map is developed by Flood Vulnerability Index (FVI) which is equal to the ratio of the estimated flood damage to the total regional property. Comparing the results of this research with Potential Flood Damage (PFD) reported in the Long-term Korea National Water Resources Plan, the exports' mistaken opinions could affect the weighting procedure of PFD, but the proposed approach based on the regional regression would overcome the drawback of PFD. It was found that FVI is highly correlated with the past damage, while PFD does not reflect the regional vulnerabilities.

Behavior Analysis of Concrete Structure under Blast Loading : (II) Blast Loading Response of Ultra High Strength Concrete and Reactive Powder Concrete Slabs (폭발하중을 받는 콘크리트 구조물의 실험적 거동분석 : (II) 초고강도 콘크리트 및 RPC 슬래브의 실험결과)

  • Yi, Na Hyun;Kim, Sung Bae;Kim, Jang-Ho Jay;Cho, Yun Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.565-575
    • /
    • 2009
  • In recent years, there have been numerous explosion-related accidents due to military and terrorist activities. Such incidents caused not only damages to structures but also human casualties, especially in urban areas. To protect structures and save human lives against explosion accidents, better understanding of the explosion effect on structures is needed. In an explosion, the blast load is applied to concrete structures as an impulsive load of extremely short duration with very high pressure and heat. Generally, concrete is known to have a relatively high blast resistance compared to other construction materials. However, normal strength concrete structures require higher strength to improve their resistance against impact and blast loads. Therefore, a new material with high-energy absorption capacity and high resistance to damage is needed for blast resistance design. Recently, Ultra High Strength Concrete(UHSC) and Reactive Powder Concrete(RPC) have been actively developed to significantly improve concrete strength. UHSC and RPC, can improve concrete strength, reduce member size and weight, and improve workability. High strength concrete are used to improve earthquake resistance and increase height and bridge span. Also, UHSC and RPC, can be implemented for blast resistance design of infrastructure susceptible to terror or impact such as 9.11 terror attack. Therefore, in this study, the blast tests are performed to investigate the behavior of UHSC and RPC slabs under blast loading. Blast wave characteristics including incident and reflected pressures as well as maximum and residual displacements and strains in steel and concrete surface are measured. Also, blast damages and failure modes were recorded for each specimen. From these tests, UHSC and RPC have shown to better blast explosions resistance compare to normal strength concrete.

A Damage Measurement of Steel Beam using PZT Sensor (PZT센서를 이용한 철골보 손상계측)

  • Seo, Hye-Won;Park, Min-Suk;Lee, Swoo-Heon;Shin, Kyung-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.477-485
    • /
    • 2010
  • Various monitoring sensors are used to predict and detect structural damage. Smart sensors, such as glass-fiber sensors, PZT, and MEMS, among others, have replaced traditional sensors. They are now being used in many areas. This study aims to predict the damage by measuring the PZT voltage attached on the specimen by the applied impact load. In the experiment to detect damages in beam connection, simple $H-400{\times}200{\times}8{\times}13$ beams were spliced with bolts. The results of FFT between PZT sensor and accelrometer were compared to measure the sensitivity of the PZT sensor. The damage to the beam was presumed by loosening the bolt, and then the damage measurement was accompanied. Secondly, a steel $PL600{\times}65{\times}5.8$ plate beam was fabricated for the purpose of experimenting on damage measurement. Impact loading test on three different locations was carried out. Damage width varied between 6~42mm on both sides by cutting, using a steel saw. The ratio of frequencies before and after the damage was computed to quantify the damage level by using FFT, and the change in mode pattern with the increased damage was investigated to measure the damage.

Emergy Evaluation of Typhoon Maemi in Busan (태풍 매미가 부산시에 미치는 영향에 대한 에머지 평가)

  • Park, KyungMin;Kim, Dong-Myung;Lee, Suk Mo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.1
    • /
    • pp.18-25
    • /
    • 2017
  • Damage of both life and property has been increased by natural disaster under the influence of climate change, thus many natural disaster vulnerability researches have been carried out to make adaptation policy and impact assessment of climate change recently. Their method for assessing vulnerability usually have used proxy variables for making vulnerability indices. However, because their results were too qualitative and relative it tends to be hard to make absolute comparison and establish standard of prevention or adaptation ability. Accordingly, this study aimed at quantifying natural disaster vulnerability using emergy through recognizing disaster as the relations between order and disorder by system approach. As a result, ordering energy (4.66E+22 sej/yr) and ordered structure (1.98E+22 sej) of Busan in 2003 and disordering energy (7.80E+18 sej), disordered parts (4.55E+20 sej) and rebuilding energy (3.87E+20 sej) by typhoon Maemi were analysed. And then, this was compared with Hurricane Andrew in Dade County. Through this comparison, if the prevention ability of Busan increases, disordered parts can be reduced against the more powerful disordering energy. Also, prevention for additional damages by disaster is needed to practical rebuilding action. In conclusion, it was able to figure out the impact of disaster quantitatively by natural systems and urban systems showing as common measure. Based on this study and further research to make effective prevention for how much prevention ability should be increased will contribute to producing the scientific data for disaster management policy in future.

Littoral Drift by the combined impact of Wind, Wave and Current ant the coastal Development Environment (해안개발환경하에서 바람 ${\cdot}$ 파랑 ${\cdot}$ 흐름의 중첩에 의한 연안표사)

  • Lee, Seung-Chul;Lee, Joong-Woo;Kim, Ki-Dam;Kang, Seok-Jin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.141-142
    • /
    • 2007
  • In recent years, the rate of mean sea level rise is increasing rapidly from the phenomena of global warming, together with the increasing trend of the storm scale. The issue of sea level rise is multifaceted and produces a range of environmental problems. Especially, high tides and the tidal currents become higher, and wave base increases, so the energy received at the coastal boundary may increase. This brings that many coastal environments go into disequilibrium, such as damages to the structures, erosion, and deposition Similarly it was known that the problems of nearshore processes and damage of berth and counter facilities during storm period had appeared at the small fishery port. Here we try to analyze the impact of the rearrangement of counter facilities and berth layout adopted for tranquility of its'inner harbor. Because this harbor is being connected to channel and open sea, the rearrangement of the structures might affect to the current speed and direction and wave height, so do to the sea bottom undulation. Therefore, we made model test for the several layouts of the berth and breakwater in this area.

  • PDF

Trail Deterioration and Distribution Characteristics of South-North Green Corridor in Incheon, Korea - A Case Study of Mountainous Type Urban Natural Parks - (인천시 남북녹지축 탐방로의 분포와 훼손특성 -산지형 도시자연공원을 사례로-)

  • Cho Woo;Oh Kang-Im;Bae Joong-Nam
    • Korean Journal of Environment and Ecology
    • /
    • v.18 no.4
    • /
    • pp.359-368
    • /
    • 2004
  • The purpose of this study is to examine distribution and damages of the trails of inquiry of urban natural parks. Those parks were located at south-north green corridor at Incheon being mountainous type of urban natural parks that were core area of urban ecosystem preservation to of urban natural parks that citizens recently made use of them as nature experience type of leisure and recreation place from time to time, and to supply basic material deciding on the ways to improve the trails of nature preservation type. The survey sites included Geyang Park, Baekma Park, Yaksa Park, Munhak Park and Cheongryang Park. The number of main trails was 42 at Geyang Park, 43 at Baekma Park, 9 at Yaksa Park, 28 at Munhak Park, and 22 at Cheongryang Park, and it was excessively more than optimum needed: The number of branch trails of the parks seemed to increase. The bared trail width in average of the roads was 3.5m, while maximum depth in average was 21.3cm. The trails were thought to be deteriorated rapidly without systematic maintenance. The 5th and 6th grade of the impact rating class that required restoration because of serious deterioration occupied 19.6∼78.0%. Based on the findings, the study suggested ways to improve and manage the trails of inquiry of urban natural parks that were placed at south-north green corridor at Incheon.

Multiple-biometric Attributes of Biomarkers and Bioindicators for Evaluations of Aquatic Environment in an Urban Stream Ecosystem and the Multimetric Eco-Model (도심하천 생태계의 수환경 평가를 위한 생지표 바이오마커 및 바이오인디케이터 메트릭 속성 및 다변수 생태 모형)

  • Kang, Han-Il;Kang, Nami;An, Kwang-Guk
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.591-607
    • /
    • 2013
  • The objectives of the study were to evaluate the aquatic environment of an urban stream using various ecological parameters of biological biomarkers, physical habitat quality and chemical water quality and to develop a "Multimetric Eco-Model" ($M_m$-E Model) for the ecosystem evaluations. For the applications of the $M_m$-E model, three zones including the control zone ($C_Z$) of headwaters, transition zone ($T_Z$) of mid-stream and the impacted zone ($I_Z$) of downstream were designated and analyzed the seasonal variations of the model values. The biomarkers of DNA, based on the comet assay approach of single-cell gel electrophoresis (SCGE), were analyzed using the blood samples of Zacco platypus as a target species, and the parameters were used tail moment, tail DNA(%) and tail length (${\mu}m$) in the bioassay. The damages of DNA were evident in the impacted zone, but not in the control zone. The condition factor ($C_F$) as key indicators of the population evaluation indicator was analyzed along with the weight-length relation and individual abnormality. The four metrics of Qualitative Habitat Evaluation Index (QHEI) were added for the evaluations of physical habitat. In addition, the parameters of chemical water quality were used as eutrophic indicators of nitrogen (N) and phosphorus (P), chemical oxygen demand (COD) and conductivity. Overall, our results suggested that attributes of biomarkers and bioindicators in the impacted zone ($I_Z$) had sensitive response largely to the chemical stress (eutrophic indicators) and also partially to physical habitat quality, compared to the those in the control zone.

Vegetation Classification and Distributional Pattern in Damyang Riverine Wetland (담양하천습지의 식생유형과 분포양상)

  • Ahn, Kyunghwan;Lim, Jeongcheol;Lee, Youlkyung;Choi, Taebong;Lee, Kwangseok;Im, Myoungsoon;Go, Youngho;Suh, Jaehwa;Shin, Youngkyu;Kim, Myungjin
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.2
    • /
    • pp.89-102
    • /
    • 2016
  • Damyang riverine wetland was designated as a wetland protected area in 2004; that is located in the Yeongsan river mainstream. Total 30 phytosociological releves at field studies were classified with 22 vegetation types including of 101 species (unidentified 1 species). Legends of actual vegetation map were separated by 6 types; riparian forest, substitute vegetation, synanthropic vegetation, wet meadow vegetation, open water, an area of wetland vegetation is about 35 % ($386,841.86m^2$). Results of this study area as follows. The plant society of Damyang riverine wetland was conjectured that it was formed by rapidly water environment change with installed weir on the upstream of protected area and operating of Damyang dam on top of the basin. Until recently, the terrace land on the river was used to cultivate, but that would be formed fallow vegetation scenery on riverfront caused by no cultivation after designated protected area. Paspalum distichum var. indutum community designated as invasive alien plant by Korea Ministry of Environment was widely developed and Myriophyllum spicatumunrecorded in the country as newly alien species was discovered in the study zone. The plants as lapped over developing environment for Leersia japonica must be occupied habitat of native plant species having similar niche. The various plant society in Damyang riverine wetland should be developed because of environmental changes, disturbances and damages of stream.

Consequences of Water Induced Disasters to Livelihood Activities in Nepal

  • Gurung, Anup;Karki, Arpana;Karki, Rahul;Bista, Rajesh;Oh, Sang-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.129-136
    • /
    • 2012
  • BACKGROUND: The changes in the climatic conditions have brought potentially significant new challenges, most critical are likely to be its impact on local livelihoods, agriculture, biodiversity and environments. Water induced disasters such as landslides, floods, erratic rain etc., are very common in developing countries which lead to changes in biological, geophysical and socioeconomic elements. The extent of damages caused by natural disasters is more sever in least developing countries. However, disasters affect women and men differently. In most of the cases women have to carry more burden as compared to their male counterpart during the period of disasters. METHODS AND RESULTS: This study examines the impact of disasters on the local livelihood especially agriculture and income generating activities of women in three districts of Nepal. The study uses the primary data collected following an exploratory approach, based on an intensive field study. The general findings of the study revealed that women had to experience hard time as compared to their male counterpart both during and after the disaster happen. Women are responsible for caring their children, collecting firewood, fetching water, collecting grass for livestock and performing household chores. Whereas, men are mainly involved in out-migration and remained out-side home most of the time. After the disaster occurred, most of the women had to struggle to support their lives as well as had to work longer hours than men during reconstruction period. Nepal follows patriarchal system and men can afford more leisure time as compared to women. During the disaster period, some of the households lost their agricultural lands, livestock and other properties. These losses created some additional workload to women respondent, however at the same time; they learn to build confidence, self-respect, self-esteem, and self-dependency.Although Nepal is predominantly agriculture, majority of the farmers are at subsistence level. In addition, men and women have different roles which differ with the variation in agro-production systems. Moreover women are extensively involved in agricultural activities though their importances were not recognized. Denial of land ownership and denial of access to resources as well as migration of male counterparts are some of the major reasons for affecting the agricultural environments for women in Nepal. CONCLUSION: The shelter reconstruction program has definitely brought positive change in women's access to decision making. The gradual increase in number of women respondent in access to decision making in different areas is a positive change and this has also provided them with a unique opportunity to change their gendered status in society.Furthermore, the exodus out-flow of male counterparts accelerated the additional burden and workload on women.