• 제목/요약/키워드: Impact Sound

검색결과 636건 처리시간 0.023초

감쇠재 사용에 따른 중량충격음의 소음 및 진동특성 (Noise and Vibration Characteristics of Heavy-weight floor impact by Using Damping Materials)

  • 전진용;정영;송희수;김민배;이영제
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.97-102
    • /
    • 2004
  • The Characteristics of noise and vibration by heavy-weight floor impact sound was studied. Resonance frequency increased a little in structures that use damping material in living room and bedroom, and acceleration waves length that respond became short, and displayed aspect that oscillation level decreases. Result that measure sound pressure level, structure that compare and applies damping materials with structure that apply the resilient materials from 63Hz lower part that impact energy is concentrated in energy spectrum of heavy-weight floor impact sound displayed result that sound pressure, level decreases remarkably. Therefore, according to use of damping materials, confirmed reduction effect of heavy-weight floor impact sound.

  • PDF

모델 실험체를 이용한 공동주택 바닥충격음 저감에 관한 실험적 연구 (An Experimental Study on the Reduction of Floor Impact Sound in Apartment Houses by using Model Test)

  • 김항;기노갑;박현구;송민정;김선우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.1044-1047
    • /
    • 2004
  • This aim of this study is is an experimental study to introduce the Reduction method of Floor Impact Sound in Apartment Houses by using Model Test, We are measured the floor impact sound in Rahamen and Apartment with Shear Wall and Post-tensioning. There is comparison between Rahmen Structure and Apartment with Shear Wall. The main results from this study are effective in reduction of heavt-weight The slab was constructed by rahamen structure. Heavy-weight can reduced by upgrading naturial frequency of floor impact sound in rahmen structure.

  • PDF

터널 내부의 도로교통소음 (Road Traffic Noise in Tunnel)

  • 여운호;유명진
    • 한국환경보건학회지
    • /
    • 제19권4호
    • /
    • pp.9-13
    • /
    • 1993
  • This paper describes the impact of reflected sound in tunnel. The impact of reflected sound is obtained from making a comparision between measurements of tunnel and bridge. Sound level of tunnel is higher than that of bridge because reflected sound is generated in tunnel. Road traffic noise cannot be freely propagated because there are many buildings in urban. Therefore, a tunnel effect is generated in urban road. The impact of reflected sound is generated not only in tunnel, but also in urban road. This study provides the basic data for tunneling work and noise control strategy in urban road.

  • PDF

라멘복합구조 공동주택의 바닥충격음 실태 (Investigation of Floor Impact Sound Levels in Rahmen Structure Multi-story Residential Buildings)

  • 정정호;송희수;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.308-311
    • /
    • 2004
  • It is reported that there is a limit in increasing heavy-weight impact noise isolation performance of the load bearing wall system apartments to meet the regulation of the Ministry of Construction and Transportation (MOCT). To increase the heavy-weight impact noise isolation performance, improvement in structural systems such as increasing concrete slab thickness and application of rahmen structure were proposed. In this study floor impact sound levels from toil apartments with two rahmen structure multi-story residential buildings were measured before the construction of the buildings finished. Measurements were made at living room and two bedrooms at each apartment when the finishing processes were finished. The average value of light-weight impact sound level from ten apartments was 56dB (L'$\sub$n,Aw/). The heavy-weight impact sound level was 44dB (L'$\sub$i.Fmax.Aw/) and the impact sound level of the impact ball was 41dB(L'$\sub$i.Fmax.Aw/), As a result floor impact noises at the rahmen structure system were lower than the regulation level.

  • PDF

자동차 임팩트 사운드에 대한 주관적 평가 및 차량 개발에 응용 (The Estimation of Subjective Evaluations for Impact Sound and Analysis of the Effects for Parts of a Car)

  • 나은우;박상원;김호욱;이상권;이경회;신영곤;배병국
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.137-142
    • /
    • 2009
  • Impact noise is induced in a car when it is driven on a harsh road or over some bumps. This noise occurs with the very high level of sound, which affects passengers in some way or other. Although it is impossible to clearly remove such noise. It is necessary to research an improvement in sound quality for impact noise. A new sound metric for impact sound is presented in the previous work. This metric is verified by comparison between mean subjective ratings and several sound metrics. In this paper, more objective attributes are considered, which are the attributes expressing the level and modulation of sound. Three sound metrics are employed to get impact sound indexes for each course by the method of multiple linear regressions. The indexes are verified by considering the correlation between the estimated values from the multiple linear regressions and the mean subjective ratings by evaluators. Also, the subjective ratings on the indexes are estimated for the case in which some parts of suspension system are changed. The estimated ratings represent more reasonable or acceptable ratings. Thus, such indexes can be used for modification of the parts of suspension system under considering a good sound quality.

  • PDF

표준시험동 바닥충격음 측정위치에 대한 고찰 (Investigation of receiving position in the measurement method for floor impact sound in a testing building)

  • 이신영;유승엽;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.964-968
    • /
    • 2007
  • The measurement of floor impact sound have been standardized in KS 2810-1 and 2. The height of receiving microphones position is specified in the standard as 1.2m which is almost half height of apartment rooms as a listening position. In this study, receiving positions are investigated by measuring the distribution of sound pressure levels at 792 receiving microphone positions in the standard testing building. Standard impact sources, tapping machine and impact ball, are driven on the center position in the source room where is located at the above floor. It was found that the distribution of sound pressure levels in the receiving room indicates significant deviation at different frequencies there is more than 5dB drop at 63Hz but 2dB rise at 125Hz at a height of 1.2m when the impact ball is driven, in the other case of a generating tapping machine there is more than 2dB rise at 125Hz at a height of 1.2m due to room modes.

  • PDF

임피던스법을 이용한 공동주택 바닥 충격음 차음성능 예측방법에 관한 실험 적 연구(II) - 경량 표준충격원을 중심으로 - (An Experimental Study or the Prediction Method of Floor Impact Sound Insulation Performance in Apartment House Using Impedance Method(II))

  • 김재수;장길수;김선우
    • 소음진동
    • /
    • 제2권1호
    • /
    • pp.21-31
    • /
    • 1992
  • In the previous paper, we report a practical floor impact sound level prediction method for a heavyweight impact source(Tire), soft impact source such as children jumping and running. According to these results, the calculated value and the measured value correspond comparatively well, regardless of differences in the floor structures. And the floor impact sound for a heavyweight impact source, soft source was strongly influenced by structural factors such as floor slab stiffness and peripheral support conditions. But the floor impact sound for a light impact source (Tapping machine), hard impact source was influenced by resilient layers, composed of multi-layer in floor structures. Thus, In this paper, 4 actual floor structures, all with differing resilient layers, were calculated using impedance method. When these calculation values were compared with the measured values, approximately all the values fell with one rank of the sound insulation grade, reference curve(L curve) by the JIS standard. So, a sample of measured values and calculated values from floor structures is presented to show the accuracy and appropriateness of the impedance method in domestic.

  • PDF

공동주택 음원실 바닥의 하중 설치에 따른 중량충격음 특성에 관한 연구 (The Research of the Heavy-Weight Impact Sound Characteristic by Live load Installation on the Source Room)

  • 김경우;양관섭;손장열
    • 한국음향학회지
    • /
    • 제26권6호
    • /
    • pp.235-242
    • /
    • 2007
  • 공동주택의 바닥충격음 측정 및 평가는 주로 입주 전에 이루어지고 있으나 실제 충격음 발생은 입주 후 커튼과 가구와 같은 중량물이 설치되어 있는 조건이므로 입주 전 후 음원세대(음원실)와 수음세대(수음실)의 상황은 다르다고 할 수 있다. 본 연구에서는 음원실에 가구 등과 같은 하중 설치에 따른 중량충격음 변화정도를 파악하기 위하여 바닥충격음 시험동과 현장에서 활하중($200kg/m^2$) 설치 전 후의 음원실 바닥슬래브 하부 진동가속도레벨 및 수음실 충격음레벨 변화를 측정하였다. 측정결과 하중설치를 통하여 진동가속도레벨 및 충격음레벨이 다소 저감되었으나 큰 영향은 받지 않는 것으로 나타났으며, 슬래브의 공진주파수도 변화하지 않았다.

Comparison of the Standard Floor Impact Sound with Living Impact Source by Subjective Evaluation

  • Park, Hyeon Ku;Kim, Kyeong Mo;Kim, Sun-Woo
    • KIEAE Journal
    • /
    • 제14권1호
    • /
    • pp.39-48
    • /
    • 2014
  • In the previous test, the verification of the standard floor impact source was carried out comparing the physical characteristics with living impact sources. The result was appeared the validation of the standard impact source was very low because of differences of physical characteristics. This study aims to evaluate annoyance and loudness of standard impact source which is used for the measurement of floor impact sound, and to compare the annoyance and loudness of living impact sources which are produced in real life. The impact sources considered are tapping machine, tire and impact ball as standard sources, and nine real sources which were chosen from the existing researches. The result showed differences of annoyance and loudness between standard impact sources and living impact sources, which means the standard impact sources may rate the performance of floor system inappropriately. In the future, the rating method should be examined how the standard impact sources are similar with real sources in the point of rating the performance of floor system.

천장구조를 이용한 공동주택 바닥충격음 차단성능 개선에 관한 연구 (A Study on the Improvement Floor Impact Sound Insulation by Ceiling Structure in Apartment Houses)

  • 기노갑;김선우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1038-1042
    • /
    • 2007
  • The factors influencing the floor impact sound insulation include floor finishing materials, shock absorbing floors (slabs included), and ceiling structures. The ceilings of the apartment houses, currently built in Korea, are set up with lower parts of slabs and paper finishing, or with double floors for protecting against floor impact sounds in order to improve the sound insulating performance. The most common the method of ceiling structure construction consists of 'wood boarded frames + Gypsum boards + ceiling papers', which is called the wood boarded frame method. This study aimed to measures and evaluates floor impact sound insulation by which the ceiling space are widened according to suppression system is added in apartment house ceiling structure.

  • PDF