• 제목/요약/키워드: Impact Safety

검색결과 2,580건 처리시간 0.028초

건물의 형상이 안전사고에 미치는 영향분석에 관한 기초연구 (A Basic Study on Analysis of the Impact of Building Shape on Safety Accidents)

  • 손승현;김지명;안성진;한범진;나영주;김태희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.27-28
    • /
    • 2022
  • There is a limit to preventing various types of safety accidents in advance at construction sites. Even for buildings of the same total floor area, it is expected that the more complex the building shape or the higher the number of floors, the higher the probability of a safety accident. Therefore, it is necessary to analyze the effect of the shape of a building on safety accidents using safety accident data generated during actual construction. The purpose of this study is to analyze the impact of building shape on safety accidents. As a result, the R2 value of shape factor and safety accident was 0.901, and the R2 value of construction difficulty and safety accident was 0.944. In the future, the results of this study will be used as basic data for improving safety management related systems.

  • PDF

스마트하이웨이 종방향 방호울타리안전성능 평가를 위한 충돌조건 (Impact Condition of Safety Performance Evaluation for Longitudinal Barriers of SMART Highway)

  • 김동성;김기동;고만기;김광주
    • 한국방재학회 논문집
    • /
    • 제9권3호
    • /
    • pp.49-57
    • /
    • 2009
  • 충돌사고시 스마트하이웨이의 정시성과 안전성의 손상정도를 최소화 하도록 스마트하이웨이의 종방향 방호울타리 충돌조건으로 기존의 충돌조건보다 상당히 상향된 충돌조건이 결정되었다. 충돌조건은 충돌차량, 충돌속도, 충돌각도로 구성된다. 가능한 많은 승용차의 탑승자 안전을 고려할 수 있도록 충돌시 피해가 크게 나타나는 작은 차량을 충돌차량으로 선정 하였다. 가능한 많은 사고 충돌속도를 포함하도록 기존의 충돌속도보다 20% 큰 충돌속도가 결정되었다. 충돌각도는 예상되는 사고 충돌각도를 거의 모두 포함하도록 결정되었다. 기존의 국내 최고성능등급의 종방향 방호울타리에 대하여 다양한 충돌조건을 적용한 시뮬레시션을 수행하고 그 결과를 분석하여 제시된 스마트하이웨이 충돌조건이 탑승자 안전에 미치는 영향을 파악하였다. 기존의 국내 최고성능등급의 종방향 방호울타리는 제시된 스마트하이웨이 충돌조건을 만족하지 못하였다. 충돌사고시 스마트하이웨이의 정시성과 안전성의 손상정도를 최소화 하기 위해서 새로운 고성능의 종방향 방호울타리가 필요하다고 판단된다.

Sensitivity of SNF transport cask response to uncertainty in properties of wood inside the impact limiter under drop accident conditions

  • Lee, Eun-ho;Ra, ChiWoong;Roh, Hyungyu;Lee, Sang-Jeong;Park, No-Choel
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3766-3777
    • /
    • 2022
  • It is essential to ensure the safety of spent nuclear fuel (SNF) transport cask in drop situation that is included in transport accident scenarios. The safety of the drop situation is affected by the impact absorption performance of impact limiters. Therefore, when designing an impact limiter, the uncertainty in the material properties that affect the impact absorption performance must be considered. In this study, the material properties of the wood inside the impact limiter were selected as the variables for a parametric study. The sensitivity analysis of the drop response of the SNF transport cask with impact limiter was performed. The minimum wood strength required to prevent a direct collision between the cask and floor was derived from the analysis results. In addition, the plastic strain response was analyzed and strain-based evaluation was performed. Based on this result, the critical values of wood properties that change the impact dynamic characteristics were investigated. Finally, the optimal material properties of wood were obtained to secure the structural safety of the SNF transport cask. The results of this study can contribute to the development of SNF transport cask, thereby ensuring safety in transport accident conditions.

Impact-resistant design of RC slabs in nuclear power plant buildings

  • Li, Z.C.;Jia, P.C.;Jia, J.Y.;Wu, H.;Ma, L.L.
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3745-3765
    • /
    • 2022
  • The concrete structures related to nuclear safety are threatened by accidental impact loadings, mainly including the low-velocity drop-weight impact (e.g., spent fuel cask and assembly, etc. with the velocity less than 20 m/s) and high-speed projectile impact (e.g., steel pipe, valve, turbine bucket, etc. with the velocity higher than 20 m/s), while the existing studies are still limited in the impact resistant design of nuclear power plant (NPP), especially the primary RC slab. This paper aims to propose the numerical simulation and theoretical approaches to assist the impact-resistant design of RC slab in NPP. Firstly, the continuous surface cap (CSC) model parameters for concrete with the compressive strength of 20-70 MPa are fully calibrated and verified, and the refined numerical simulation approach is proposed. Secondly, the two-degree freedom (TDOF) model with considering the mutual effect of flexural and shear resistance of RC slab are developed. Furthermore, based on the low-velocity drop hammer tests and high-speed soft/hard projectile impact tests on RC slabs, the adopted numerical simulation and TDOF model approaches are fully validated by the flexural and punching shear damage, deflection, and impact force time-histories of RC slabs. Finally, as for the two low-velocity impact scenarios, the design procedure of RC slab based on TDOF model is validated and recommended. Meanwhile, as for the four actual high-speed impact scenarios, the impact-resistant design specification in Chinese code NB/T 20012-2019 is evaluated, the over conservation of which is found, and the proposed numerical approach is recommended. The present work could beneficially guide the impact-resistant design and safety assessment of NPPs against the accidental impact loadings.

완구 안전검사 기준을 적용한 강아지 로봇의 낙하 해석 (Drop Simulation of Puppy Robot by Toys Safety Standards)

  • 정태은;김준기;신효철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.710-713
    • /
    • 2005
  • Many impact or drop test researches of home appliances are published, but those of toys cannot be found easily. External impacts are the primary causes of fracture of toys. For impact proof design, the finished product should pass an impact test after molding design. There are several international toy safety standards or requirements such as US CPSC(Consumer Product Safety Commission), ASTM F963-96a, EN71 and so on. The puppy robot which patrols around the house, namely, the watchdog was selected to investigate toy safety because it has considerable weight and outer panels are made of plastics. First the model of watchdog robot was obtained by 3 dimensional scan. Surface data can be generated from 3D polygon data of the watchdog. A reliable drop simulation method for the watchdog was established using Pam-crash program according to Korean toy safety standards. When there is a low impact allowance value, the molding design should be reinforced or changed. It was found that the maximum impact stress reaches the ultimate stress of panel material.

  • PDF

헤드레스트의 형상에 따른 충돌 및 피로해석을 통한 안전성 연구 (A Safety Study Using Impact and Fatigue Analyses According to Headrest Shape)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제17권3호
    • /
    • pp.39-44
    • /
    • 2018
  • The automotive headrest is intended to provide comfort, safety, convenience and durability to a vehicle's passengers and driver. In this study, impact and fatigue analyses were carried out for three headrest shape models-A, B and C. These models have the same material properties and the same force was applied to them. Impact and fatigue analyses demonstrated that all of the models obtained almost the exact same result values. This study found that all models had similar equivalent stress, deformation, fatigue life and main damage parts due to the fact that the shared same material properties. Better safety and fatigue life can be anticipated by changing the material of the headrest in order to secure more stable safety. An automotive headrest optimized for safety and durability is thought to have been developed through the impact and fatigue analyses of this study.

수소버스 측면충돌 시험방법 연구 (Study on Side Impact Test Procedure of Hydrogen Bus)

  • 김경진;신재호;한경희;인정민;심소정;김시우
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.92-98
    • /
    • 2021
  • Recently hydrogen fuel cell buses have been deployed for the public transportations. In order to introduce buses fueled by hydrogen successfully, the research results of hydrogen bus safety should be discussed and investigated significantly. Especially, Korean government drives research in terms of various applications of hydrogen energy to replace the conventional fuel energy resources and to improve the safety evaluation. Thus it is necessary to examine vehicle crashworthiness under side impact loadings. This study was focused on the simulation result evaluation of full bus model and simplified bus model with hydrogen fuel tank module and mounting system located below floor structure due to the significance of bus side impact accidents. The finite element models of hydrogen bus, fuel tank system and side impact moving barrier were set up and simulation results reported model performance and result comparison of two side impact models. Computational results and research discussion showed the conceptual side impact framework to evaluate hydrogen bus crashworthiness.

추락위험 방지용 보호구로서 안전모 규정에 관한 고찰 (A Survey on Regulations of Safety Helmet for Preventing Fall Hazard)

  • 심상우;심용수;이종빈;장성록
    • 한국안전학회지
    • /
    • 제37권6호
    • /
    • pp.96-101
    • /
    • 2022
  • The Occupational Safety and Health Act holds that industrial safety helmets can be used as protective equipment to prevent the risk of injury in fall accidents. To better understand the importance given to PPE for the head, we analyzed the relevant regulations and guidelines in developed countries and reviewed the guidelines on testing safety helmets. The PPE regulations in Korea were notably different from those in other countries. First, except in Korea and Japan, safety helmets were used for protection against falling objects, flying objects, impact, or electric shock. However, the regulations did not recognize safety helmets as a PPE against fall hazards. Second, the impact energy applied on the helmet was within the range 50-100 J, and the helmet could protect only the upper part of the head against hazards such as the impact of falling objects, flying objects, etc. Third, in Korean regulations, the term "fall" was used in relation to the parts where the safety helmet was specified as a fall hazard PPE, unlike in other countries. We propose that the term "fall" should be revised to "shock" in Korean regulations for the safety helmet.

측방충돌시 휠체어 탑승자의 위험도 분석에 의한 안전성평가 (A safety assessment by Risk Analysis Method on wheelchair occupant in side impact)

  • 김성민;김성재;강태건;전병호;김경훈;문무성;홍정화
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 추계학술대회 논문요약집
    • /
    • pp.16-16
    • /
    • 2003
  • In this study, for a safety assessment of wheelchair occupant in side impact, we used a dynamic sled impact test results. The test was carried out total 6 times and impact speed was 13g$\pm$0.43/28km/h$\pm$0.95, By using EURO SID-1 dummy, head performance criteria(HPC), abdominal peak force, etc. were measured. We evaluated wheelchair occupant safety by motion criteria(MC) which was measured by head, trunk and side deformation change of wheelchair and Head & Neck injury criteria(HNI) measured by using head and neck deformation angle and time relation. When we assumed that the maximum injury value in side impact was 100%, the results of motion criteria(MC) of wheelchair occupant were max 80.3, mim 32.3 and average 60.3%, Head & Neck injury criteria(HNI) value were max 118.4, min 14.5 and average 59.7%.

  • PDF

휠체어 탑승 버스의 승객안전도 분석 (Occupant Safety Analysis for Wheelchair Bus Development)

  • 김경진;신재호;용부중;강병도
    • 자동차안전학회지
    • /
    • 제12권1호
    • /
    • pp.39-45
    • /
    • 2020
  • The express/intercity bus models have been developing for wheelchair users to provide the preferable long-distance travels by the Korean government research. In the previous studies, evaluation method was set up for the wheelchair users' safety and the study for wheelchair occupants' safety was performed under various crash loadings mimic to real accidents, frontal crash, side impact and rollover, etc. This study was focused on the evaluation of occupant behaviors and injuries (head and chest) during vehicle impact loading cases in order to ensure the safety of wheelchair passengers in the bus. The occupant response and belt loading data during the sled FE simulation were compared with those of the sled test. The simulation results showed overall safety tolerances of wheelchair occupants under the severe frontal deceleration, side impact loading based on the FMVSS 214 configuration and bus rollover loading.