• Title/Summary/Keyword: Impact Prediction Methods

Search Result 186, Processing Time 0.035 seconds

The impact of the change in the splitting method of decision trees on the prediction power (의사결정나무의 분기법 변화가 예측력에 미치는 영향)

  • Chang, Youngjae
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.4
    • /
    • pp.517-525
    • /
    • 2022
  • In the era of big data, various data mining techniques have been proposed as major analysis methodologies. As complex and diverse data is mass-produced, data mining techniques have attracted attention as a method that forms the foundation of data science. In this paper, we focused on the decision tree, which is frequently used in practice and easy to understand as one of representative data mining methods. Specifically, we analyzed the effect of the splitting method of decision trees on the model performance. We compared the prediction power and structures of decision tree models with different split methods based on various simulated data. The results show that the linear combination split method can improve the prediction accuracy of decision trees in the case of data simulated from nonlinear models with complex structure.

Highway traffic noise modeling and estimation based on vehicles volume and speed

  • Rassafi, Amir Abbas;Ghassempour, Jafar
    • Advances in environmental research
    • /
    • v.4 no.4
    • /
    • pp.211-218
    • /
    • 2015
  • Traffic noise estimation models are useful in evaluation of the noise pollution in current circumstances. They are helpful tools for design and planning new roads and highways. Measurement of average traffic noise level is possible when traffic speed and volume are known. The objective of this study was to devise a model for prediction of highway traffic noise levels based on current traffic variables in Iran. The design of this model was to take the impact of traffic congestion into consideration and to be field tested. This study is a library research augmented by field study conducted on Saeedi Highway located south west of Tehran. The period for the field study lasted 5 days from 7-12 February, 2013. This study examined liner and non-liner methods in formulation of its model. Liner method without a fixed coefficient was the best fit for the intended model. The proposed model can serve as a decision making tool to estimate the impact of key influential factors on sound pressure levels in urban areas in Iran.

Research on Information Spread impact of SNS(Study of Twitter) (SNS 정보확산력 산출에 관한 연구 - 트위터를 중심으로 -)

  • Park, Sang Min;Park, Tae Hyoung;Lee, Kyung Ho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.3
    • /
    • pp.157-169
    • /
    • 2012
  • As of 2006. 3. the twitter offered in the USA has been one of the propaganda instrument used with ads and politics functioning speedy information diffusion on SNS communicated with others through 140 letters of short messages. and while twitter is using propaganda instrument, it keeps on trying to verify how it has an effect on. So, on the paper, I suggest new simulation model of information diffusion based on probability being able to predict the range of proliferation after it analyze the existing influence and the diffusion force on verification methods. It designed algorithm of verification and algorithm of prediction to use twitter's Open API with Python basement. It proved effectiveness on the model through the analysis to operate the twitter of practical local autonomous entity.

Reliability sensitivity analysis of dropped object on submarine pipelines

  • Edmollaii, Sina Taghizadeh;Edalat, Pedram;Dyanati, Mojtaba
    • Ocean Systems Engineering
    • /
    • v.9 no.2
    • /
    • pp.135-155
    • /
    • 2019
  • One of the safest and the most economical methods to transfer oil and gas is pipeline system. Prediction and prevention of pipeline failures during its assessed lifecycle has considerable importance. The dropped object is one of the accidental scenarios in the failure of the submarine pipelines. In this paper, using Monte Carlo Sampling, the probability of damage to a submarine pipeline due to a box-shaped dropped object has been calculated in terms of dropped object impact frequency and energy transfer according to the DNV-RP-F107. Finally, Reliability sensitivity analysis considering random variables is carried out to determine the effect intensity of each parameter on damage probability. It is concluded that impact area and drag coefficient have the highest sensitivity and mass and add mass coefficient have the lowest sensitivity on probability of failure.

Evaluation of Water Quality Prediction Models at Intake Station by Data Mining Techniques (데이터마이닝 기법을 적용한 취수원 수질예측모형 평가)

  • Kim, Ju-Hwan;Chae, Soo-Kwon;Kim, Byung-Sik
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.705-716
    • /
    • 2011
  • For the efficient discovery of knowledge and information from the observed systems, data mining techniques can be an useful tool for the prediction of water quality at intake station in rivers. Deterioration of water quality can be caused at intake station in dry season due to insufficient flow. This demands additional outflow from dam since some extent of deterioration can be attenuated by dam reservoir operation to control outflow considering predicted water quality. A seasonal occurrence of high ammonia nitrogen ($NH_3$-N) concentrations has hampered chemical treatment processes of a water plant in Geum river. Monthly flow allocation from upstream dam is important for downstream $NH_3$-N control. In this study, prediction models of water quality based on multiple regression (MR), artificial neural network and data mining methods were developed to understand water quality variation and to support dam operations through providing predicted $NH_3$-N concentrations at intake station. The models were calibrated with eight years of monthly data and verified with another two years of independent data. In those models, the $NH_3$-N concentration for next time step is dependent on dam outflow, river water quality such as alkalinity, temperature, and $NH_3$-N of previous time step. The model performances are compared and evaluated by error analysis and statistical characteristics like correlation and determination coefficients between the observed and the predicted water quality. It is expected that these data mining techniques can present more efficient data-driven tools in modelling stage and it is found that those models can be applied well to predict water quality in stream river systems.

Analysis of the Impact on Prediction Models Based on Data Scaling and Data Splitting Methods - For Retaining Walls with Ground Anchors Installed (데이터 스케일링과 분할 방식에 따른 예측모델의 영향 분석 - 그라운드 앵커가 설치된 흙막이 벽체 대상)

  • Jun Woo Shin;Heui Soo Han
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.639-655
    • /
    • 2023
  • Recently, there has been a growing demand for underground space, leading to the utilization of earth retaining walls for deep excavations. Earth retaining walls are structures that are susceptible to displacement, and their measurement and management are carried out in accordance with the standards established by the Ministry of Land, Infrastructure, and Transport. However, managing displacement through measurement can be considered similar to post-processing. Therefore, in this study, we not only predicted the horizontal displacement of a retaining wall with ground anchors installed using machine learning, but also analyzed the impact of the prediction model based on data scaling and data splitting methods while learning measurement data using machine learning. Custom splitting was the most suitable method for learning and outputting measurement data. Data scaling demonstrated excellent performance, with an error within 1 and an R-squared value of 0.77 when the anchor tensile force and water pressure were standardized. Additionally, it predicted a negative displacement compared to a model that without scaling.

Defect Prediction and Variable Impact Analysis in CNC Machining Process (CNC 가공 공정 불량 예측 및 변수 영향력 분석)

  • Hong, Ji Soo;Jung, Young Jin;Kang, Sung Woo
    • Journal of Korean Society for Quality Management
    • /
    • v.52 no.2
    • /
    • pp.185-199
    • /
    • 2024
  • Purpose: The improvement of yield and quality in product manufacturing is crucial from the perspective of process management. Controlling key variables within the process is essential for enhancing the quality of the produced items. In this study, we aim to identify key variables influencing product defects and facilitate quality enhancement in CNC machining process using SHAP(SHapley Additive exPlanations) Methods: Firstly, we conduct model training using boosting algorithm-based models such as AdaBoost, GBM, XGBoost, LightGBM, and CatBoost. The CNC machining process data is divided into training data and test data at a ratio 9:1 for model training and test experiments. Subsequently, we select a model with excellent Accuracy and F1-score performance and apply SHAP to extract variables influencing defects in the CNC machining process. Results: By comparing the performances of different models, the selected CatBoost model demonstrated an Accuracy of 97% and an F1-score of 95%. Using Shapley Value, we extract key variables that positively of negatively impact the dependent variable(good/defective product). We identify variables with relatively low importance, suggesting variables that should be prioritized for management. Conclusion: The extraction of key variables using SHAP provides explanatory power distinct from traditional machine learning techniques. This study holds significance in identifying key variables that should be prioritized for management in CNC machining process. It is expected to contribute to enhancing the production quality of the CNC machining process.

A Case Study on the Vibration Propagation Characteristics by Underwater Rock Cutting Work (수중 쇄암작업에 따른 진동 전파 특성에 관한 시공 사례)

  • Lim, Dae-Kyu;Shin, Young-Cheol;Kim, Young-Min;Lee, Chung-Eon
    • Explosives and Blasting
    • /
    • v.33 no.2
    • /
    • pp.25-39
    • /
    • 2015
  • The common underwater rock removal methods involve underwater blasting and crane's chisel dropping impact method. From an environmental point of view, these methods cause ground vibrations and underwater noise. At the site for this study, a method of dropping heavyweight chisel is selected to remove the underwater bedrock near the ferry rack in the course of improving the cargo handling ability of the loading dock. A prediction formula for the vibration was obtained based on the measurement and evaluation of the vibrations caused by the chisel dropping impacts during the test droppings. The prediction formula was successfully applied to the main construction for securing the stability of the structure.

Impact of boundary layer simulation on predicting radioactive pollutant dispersion: A case study for HANARO research reactor using the WRF-MMIF-CALPUFF modeling system

  • Lim, Kyo-Sun Sunny;Lim, Jong-Myung;Lee, Jiwoo;Shin, Hyeyum Hailey
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.244-252
    • /
    • 2021
  • Wind plays an important role in cases of unexpected radioactive pollutant dispersion, deciding distribution and concentration of the leaked substance. The accurate prediction of wind has been challenging in numerical weather prediction models, especially near the surface because of the complex interaction between turbulent flow and topographic effect. In this study, we investigated the characteristics of atmospheric dispersion of radioactive material (i.e. 137Cs) according to the simulated boundary layer around the HANARO research nuclear reactor in Korea using the Weather Research and Forecasting (WRF)-Mesoscale Model Interface (MMIF)-California Puff (CALPUFF) model system. We examined the impacts of orographic drag on wind field, stability calculation methods, and planetary boundary layer parameterizations on the dispersion of radioactive material under a radioactive leaking scenario. We found that inclusion of the orographic drag effect in the WRF model improved the wind prediction most significantly over the complex terrain area, leading the model system to estimate the radioactive concentration near the reactor more conservatively. We also emphasized the importance of the stability calculation method and employing the skillful boundary layer parameterization to ensure more accurate low atmospheric conditions, in order to simulate more feasible spatial distribution of the radioactive dispersion in leaking scenarios.

A Basic Study on Sale Price Prediction Model of Apartment Building Projects using Machine Learning Technique (머신러닝 기반 공동주택 분양가 예측모델 개발 기초연구)

  • Son, Seung-Hyun;Kim, Ji-Myong;Han, Bum-Jin;Na, Young-Ju;Kim, Tae-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.151-152
    • /
    • 2021
  • The sale price of apartment buildings is a key factor in the success or failure of apartment projects, and the factors that affect the sale price of apartments vary widely, including location, environmental factors, and economic conditions. Existing methods of predicting the sale price do not reflect the nonlinear characteristics of apartment prices, which are determined by the complex impact factors of reality, because statistical analysis is conducted under the assumption of a linear model. To improve these problems, a new analysis technique is needed to predict apartment sales prices by complex nonlinear influencing factors. Using machine learning techniques that have recently attracted attention in the field of engineering, it is possible to predict the sale price reflecting the complexity of various factors. Therefore, this study aims to conduct a basic study for the development of a machine learning-based prediction model for apartment sale prices.

  • PDF