• 제목/요약/키워드: Impact Force Measurement

검색결과 81건 처리시간 0.029초

Impact force localization for civil infrastructure using augmented Kalman Filter optimization

  • Saleem, Muhammad M.;Jo, Hongki
    • Smart Structures and Systems
    • /
    • 제23권2호
    • /
    • pp.123-139
    • /
    • 2019
  • Impact forces induced by external object collisions can cause serious damages to civil engineering structures. While accurate and prompt identification of such impact forces is a critical task in structural health monitoring, it is not readily feasible for civil structures because the force measurement is extremely challenging and the force location is unpredictable for full-scale field structures. This study proposes a novel approach for identification of impact force including its location and time history using a small number of multi-metric observations. The method combines an augmented Kalman filter (AKF) and Genetic algorithm for accurate identification of impact force. The location of impact force is statistically determined in the way to minimize the AKF response estimate error at measured locations and then time history of the impact force is accurately constructed by optimizing the error co-variances of AKF using Genetic algorithm. The efficacy of proposed approach is numerically demonstrated using a truss and a plate model considering the presence of modelling error and measurement noises.

스트레인게이지가 부착된 충격력 측정 장비 개발 (Development of an Impact Force Measurement Device with an Attached Strain Gauge)

  • 정익수
    • 한국운동역학회지
    • /
    • 제22권2호
    • /
    • pp.243-251
    • /
    • 2012
  • The purpose of this study was to develop an impact force measurement device in order to facilitate the acquisition of quantitative data for the analysis of various sporting events. The device was designed to include cylindrical aluminum supports of 220 mm diameter, which allows mounting and dismounting of the device on walls and frames. In addition, a hard sponge for impact absorption, as well as 4 springs, were attached to the plate. Both were attached to prevent psychological variables and injuries. When a subject applies force on the device, accurate data about the maximum repulsive force is acquired in real time, with a lag of only 0.001 s. The device was calibrated in four steps: (1) increase, (2) increase, (3) increase-decrease, and (4) increase-decrease. The maximum relative expanded uncertainty was 0.166%, indicating that the impact force measurement was sufficiently reliable. The proposed device can be applied to various sporting situations and is expected to be useful for studying kinetics.

The Levitation Mass Method: A Precision Mass and Force Measurement Technique

  • Fujii, Yusaku
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.46-50
    • /
    • 2008
  • The present status and future prospects of the levitation mass method (LMM), a technique for precision mass and force measurement, are reviewed. In the LMM, the inertial force of a mass levitated using a pneumatic linear bearing is used as the reference force applied to the objects being tested, such as force transducers, materials, or structures. The inertial force of the levitated mass is measured using an optical interferometer. We have modified this technique for dynamic force calibration of impact, oscillation, and step loads. We have also applied the LMM to material testing, providing methods for evaluating material viscoelasticity under an oscillating or impact load, evaluating material friction, evaluating the biomechanics of a human hand, and generating and measuring micro-Newton-level forces.

튜브와 지지대 사이의 동적상호 충격력 측정장치 특성규명에 관한 연구 (A Study on the Characteristics of the Tube-to-Support Dynamic Impact Force Measurement Facility)

  • 김일곤;박진무
    • 소음진동
    • /
    • 제5권1호
    • /
    • pp.95-106
    • /
    • 1995
  • Flow-induced vibration in heat exchanger (or fuel rod) in nuclar power plant can cause dynamic interactions between tubes and tube supports resulting in fretting-wear. To increase the reliability and design life of heat exchanger components, design criteria that establish acceptable limits of vibration and minimize fretting wear are necessary. The fretting-wear rate is dependent upon material combination, contact configuration, environmental conditions and tube-to tube support dynamic interaction. It is demostrated that the fretting -wear rate correlates well with tube-to-support contact force or work rate. The tube-to-support dynamic interaction, which consists of dynamic contact forces and tube motion, is used to relate single-span wear data to real heat exchanger configurations consisting of multi-span tube bundles. This paper describes the test facility to measure tube-to-support dynamic impact force and reports its dynamic characteristics through the four impact tests - a force transduces independent and external impact tests, central ring inside impact test and additional cylinder impact test. Through the tests the impact parameter change dependent upon the material difference of impacting ball is studied, and the impact parameters of Force Transducer Assembly components are measured. And also the dynamic behavior of Force Transducer Assembly is analyzed. The force measurement technique herein is shown to provide a reasonable measure of dynamic contact forces.

  • PDF

Compensation of errors caused by resonance vibration of measurement system in impact force measurement

  • Usui, Y.;Miyazawa, S.;Sawai, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.593-596
    • /
    • 1994
  • When a force impulse acting on a massive and plex object is measured with a dynamometer, be resonant vibration of the measurement system often leads to serious inaccuracies. A more accurate measurement is obtained when the transfer function ,of the object-dynamometer system is used to compensate for the error in the dynamometer's output signal. The natural frequency and the damping coefficient of the transfer function are estimated by analyzing the waveform of the free damped vibration period after the loading of the force has ended. The residue of the system is determined such that the compensated force spectrum becomes smooth within a neighborhood of the natural frequency. The effectiveness of this signal processing method is experimentally tested on a hammer impulse, under the assumption that the hammer's high resonant frequency accurately models the problems encountered in force impact measurement. The compensation method is used to derive a improved estimate of the hammer impulse.

  • PDF

역분석에 의한 충격력 재현 특성 (Reconstruction Characteristics of Impact Force by Inverse Analysis)

  • 조창기;이규섭;류봉조;이종원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.640-644
    • /
    • 1997
  • This poaper descibes a method for reconstructing the impact force by inverse analysis. The inverse problem of reconstructing the impact force using experimentally measured structural responses tends to be ill-conditioned. In practical application, impact response data involve niise caused by the measurement system. We present a method to minimize the mean square error of reconstructed forcd. The agreement is very satisfactory in all the comparisons. This verifies the proposed method.

  • PDF

변형률 게이지 측정원리를 이용한 충격하중 측정 센서의 동적응답 특성에 관한 연구 (Study on the Dynamic Response Characteristics of Impact Force Sensors Based on the Strain Gage Measurement Principle)

  • 안중량;김승곤;성낙훈;송영수;조상호
    • 화약ㆍ발파
    • /
    • 제29권1호
    • /
    • pp.41-47
    • /
    • 2011
  • 발파에 의한 암반손상영역을 평가하고 암반 파쇄도를 제어하기 위해서는 장약실 내 발생하는 폭발압력에 관한 정보는 중요하다. 이를 위하여 본 연구에서는 철, 알루미늄, 아크릴 재질의 센서에 대한 낙추 충격 시험으로부터 동적 변형률 신호를 측정하여 센서의 동적 응답 특성을 분석하였다. 철재 센서의 경우 충격하중에 가장 적은 변형률 출력 값을 보였으며 센서길이에 대한 출력 값의 변화는 적게 나타났다. 철제 센서를 뇌관의 충격하중 측정에 적용하였다.

대칭 및 비대칭 2차원 쐐기의 입수 충격에 관한 실험적 연구 (Experimental Study of Water Impact Loads on Symmetric and Asymmetric Wedges)

  • 김경환;이동엽;홍사영;김영식;김병완
    • 한국해양공학회지
    • /
    • 제28권3호
    • /
    • pp.209-217
    • /
    • 2014
  • In the present study, the water impact loads on two-dimensional symmetric and asymmetric wedges were mainly studied. The impact pressure and force were measured during a vertical drop of the symmetric and asymmetric wedges. The measured pressure was compared with analytic solutions. The measured force at a local area of the wedge was compared with the integrated pressures and analytic solutions. Some findings on symmetric and asymmetrical wedge drops are presented, and the reliability of the force sensor used for the measurement of the local impact force is discussed.

유압 브레이커의 타격 에너지 측정을 위한 유압 변환장치 개발 (Development of the Hydraulic Pressure Transducer System for Testing the Impact Energy of Hydraulic Breaker)

  • 이근호;이용범;정동수
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.154-160
    • /
    • 2004
  • Hydraulic breaker of excavator has been used for the destruction and disassembling of buildings, crashing road pavement, breaking rocks at quaky and etc. The performance of breakers is evaluated their own destructive force and the number of impact by input hydraulic flow rate and pressure on the operating conditions. Because hydraulic breakers generate high impact energy, the accurate measurement of the impact force has been facing a technical challenge. In this study, the hydraulic pressure transducer system was developed based on the characteristics of pressure variation in closed vessel fur testing the impact energy. The hydraulic pressure transducer system is consisted with a hydraulic cylinder, main base, pressure & temperature sensors, LVDT, data acquisition system and etc. The developed hydraulic pressure transducer system was applied to measure the impact energy for hydraulic breaker. The measured impact force was 438.8 kgf.m within the designed impact force bounds. The developed hydraulic pressure transducer system as a simple tester could be applied to measure the impact force and the number of impact.

임팩트 볼을 활용한 바닥충격음 측정 및 평가 (Floor Impact Noise Measurement and Evaluation Method Using Impact Ball)

  • 전진용;정정호
    • 한국소음진동공학회논문집
    • /
    • 제15권10호
    • /
    • pp.1160-1168
    • /
    • 2005
  • Floor impact noise isolation performance of reinforced concrete floors was investigated through new measurement method using impact bail. Strong impact force in Bow frequency band below 63 Hz of bang machine is not similar to human impact source and causes some problem in evaluating heavy-weight Impact noise but heavy-weight impact noise measurement and evaluation using impact ball which is very similar to human impact is more reliable than bang machine. Correction value on the background noise and sensitivity of residents should be considered on the floor impact noise evaluation classes.