• Title/Summary/Keyword: Impact Beam

Search Result 521, Processing Time 0.028 seconds

The Interaction for the pit formation on ABS with laser beam (레이저에 의한 ABS의 홈 형성에 동반되는 상호작용)

  • Kim Youngseop;Park Sohee;Shin Yongjin
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2004.10a
    • /
    • pp.22-28
    • /
    • 2004
  • Pit and rim formation on the Acrylonitrile Butadiene Styrene(ABS) plastic surface was evaluated after it was irradiated by $CO_2$ and Nd:YAG laser beams. Our results show that thermal effect floor was well observed at the outer wall of pit with $CO_2$ laser irradiated while it was not the case with Nd:YAG laser irradiated. Also the volume and depth of pit formation increase proportionally with the energy intensities of two laser irradiations, but there are significant differences in the slope, width, and FWHM of the Pit formation with two types of laser irradiations. This result shows that $CO_2$ laser irradiation leads to better cooling contraction effect while Nd:YAG laser irradiation induces better recoil pressure effect during the interaction between ABS plastic and laser beam irradiation. The shape of the laser marking could vary significantly depending on the traveling path of molten plastic during injection molding of ABS plastic. Therefore, the selection of material and molding process can have a great impact on the performance of optical storage media.

  • PDF

Improvement and Evaluation of Structural Performance of Steel Fiber Reinforced Concrete Beams Using Early Age Concrete (초기재령 강섬유보강 철근콘크리트 보의 구조성능 평가 및 개선)

  • Ha, Gee-Joo;Shin, Jong-Hack;Kwak, Yoon-Keun;Kwon, Chil-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.129-137
    • /
    • 1999
  • Reinforced concrete structures using early age concrete were result in the degradation of structural performance due to crack, overload, unexpected vibration and impact load. It demands urgently that reinforced concrete structure using early age concrete should be improved the serviceability and structural performance with the application of new fiber materials. Therefore specimens, designed by the test varibles, such as with or without stirrup and percent of steel fiber incorporated, were constructed and tested to evaluate and develop the structural performance of reinforced steel fiber concrete beam. Based on the test results reported in this study, the following conclusions are made. Specimens, designed by the over 0.75% of steel fiber incorporated, were showed the ductile behavior and failed slowly with flexure and flexure-shear. Comparing with the load-displacement relationship of specimen BSS, designed by the recommendations of the Ministry of Construction and Transportation, reinforced steel fiber concrete beam using early age concrete, over 0.75% of steel fiber incorporated, gets enough load carrying capacity and ductility. Increasing the percent of steel fiber incorporated(0.25~2.0%), the ultimate shear stress of each specimen were increased 12~40% than that of control specimen SSS.

  • PDF

GEANT4 characterization of the neutronic behavior of the active zone of the MEGAPIE spallation target

  • Lamrabet, Abdesslam;Maghnouj, Abdelmajid;Tajmouati, Jaouad;Bencheikh, Mohamed
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3164-3170
    • /
    • 2021
  • The increasing interest that GEANT4 is gaining nowadays, because of its special capabilities, prompted us to address its reliability in neutronic calculation for the realistic and complex spallation target MEGAPIE of the Paul Scherrer Institute of Switzerland. In this paper we have specifically addressed the neutronic characterization of the active zone of this target. Three physical quantities are evaluated: neutron flux spectra and total neutron fluxes on target's z-axis, and the neutron yield as a function of the target's altitude and radius. Comparison of the obtained results with those of the MCNPX reference code and some experimental measurements have confirmed the impact of the geometrical and proton beam models on the neutron fluxes. It has also allowed to reveal the intrinsic influence of the code type. The resulting differences reach a factor of ~2 for the beam model and 4-18% for the other parameters cumulated. The analysis of the neutron yield has led us to conclude that: 1) Increasing the productivity of the MEGAPIE target cannot be achieved simply by increasing the thickness of the target, if the irradiation parameters are not modified. 2) The size of the spallation area needs to be redefined more precisely.

Determining PGAA collimator plug design using Monte Carlo simulation

  • Jalil, A.;Chetaine, A.;Amsil, H.;Embarch, K.;Benchrif, A.;Laraki, K.;Marah, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.942-948
    • /
    • 2021
  • The aim of this work is to help inform the decision for choosing a convenient material for the PGAA (Prompt Gamma Activation Analysis) collimator plug to be installed at the tangential channel of the Moroccan Triga Mark II Research Reactor. Two families of materials are usually used for collimator construction: a mixture of high-density polyethylene (HDPE) with boron, which is commonly used to moderate and absorb neutrons, and heavy materials, either for gamma absorption or for fast neutron absorption. An investigation of two different collimator designs was performed using N-Particle Monte Carlo MCNP6.2 code with the ENDF/B-VII.1 and MCLIP84 libraries. For each design, carbon steel and lead materials were used separately as collimator heavy materials. The performed study focused on both the impact on neutron beam quality and the neutron-gamma background at the exit of the collimator beam tube. An analysis and assessment of the principal findings is presented in this paper, as well as recommendations.

The LaserFIB: new application opportunities combining a high-performance FIB-SEM with femtosecond laser processing in an integrated second chamber

  • Ben Tordoff;Cheryl Hartfield;Andrew J. Holwell;Stephan Hiller;Marcus Kaestner;Stephen Kelly;Jaehan Lee;Sascha Muller;Fabian Perez-Willard;Tobias Volkenandt;Robin White;Thomas Rodgers
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.24.1-24.11
    • /
    • 2020
  • The development of the femtosecond laser (fs laser) with its ability to provide extremely rapid athermal ablation of materials has initiated a renaissance in materials science. Sample milling rates for the fs laser are orders of magnitude greater than that of traditional focused ion beam (FIB) sources currently used. In combination with minimal surface post-processing requirements, this technology is proving to be a game changer for materials research. The development of a femtosecond laser attached to a focused ion beam scanning electron microscope (LaserFIB) enables numerous new capabilities, including access to deeply buried structures as well as the production of extremely large trenches, cross sections, pillars and TEM H-bars, all while preserving microstructure and avoiding or reducing FIB polishing. Several high impact applications are now possible due to this technology in the fields of crystallography, electronics, mechanical engineering, battery research and materials sample preparation. This review article summarizes the current opportunities for this new technology focusing on the materials science megatrends of engineering materials, energy materials and electronics.

Buckling behavior of intermediate filaments based on Euler Bernoulli and Timoshenko beam theories

  • Muhammad Taj;Muzamal Hussain;Mohamed A. Khadimallah;Muhammad Safeer;S.R. Mahmoud;Zafer Iqbal;Mohamed R. Ali;Aqib Majeed;Abdelouahed Tounsi;Manzoor Ahmad
    • Advances in concrete construction
    • /
    • v.15 no.3
    • /
    • pp.171-178
    • /
    • 2023
  • Cytoskeleton components play key role in maintaining cell structure and in giving shape to the cell. These components include microtubules, microfilaments and intermediate filaments. Among these filaments intermediate filaments are the most rigid and bear large compressive force. Actually, these filaments are surrounded by other filaments like microtubules and microfilaments. This network of filaments makes a layer as a surface on intermediate filaments that have great impact on buckling behavior of intermediate filaments. In the present article, buckling behavior of intermediate filaments is studied by taking into account the effects of surface by using Euler Bernoulli and Timoshenko beam theories. It is found that effects of surface greatly affect the critical buckling force of intermediate filaments. Further, it is observed that the critical buckling force is inversely proportional to the length of filament. Such types of observations are helpful for further analysis of nanofibrous in their actual environments within the cell.

Design of intelligent estimation of composite fluid-filled shell for three layered active control structure

  • Ghamkhar, Madiha;Hussain, Muzamal;Khadimallah, Mohamed A.;Ayed, Hamdi;Naz, Muhammad Yasin;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.117-126
    • /
    • 2022
  • The vibrational characteristic of three-layered cylindrical shell (CS) submerged in fluid with the ring support has been studied. The inner and outer layer is supposed to construct by isotropic layer. The composition of central layer is of functionally graded material type. Acoustic Wave condition has been utilized to present the impact of fluid. The central layer of cylindrical shell (CS) varies by volume fraction law that has been expressed in terms of polynomial. The main shell frequency equation has been obtained by theory of Love's shell and Rayleigh-Ritz technique. The oscillation of natural frequency has been examined under a variety of end conditions. The dependence of axial model has been executed with the help of characteristic beam function. The natural frequencies (NFs) of functionally graded material (FGM) shell have been observed of cylindrical shell along the shell axial direction. Different physical parameters has been used to examine the vibration characteristics due to the effect of volume fraction law. MATLAB software has been used to get result.

Residual behavior of SRRAC beam and column after exposure to high temperatures

  • Zhou, Ji;Chen, Zongping;Zhou, Chunheng;Zheng, Wei;Ye, Peihuan
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.369-388
    • /
    • 2022
  • Composite effect between steel and recycled aggregate concrete (RAC) in steel reinforced-RAC (SRRAC) structures can effectively improve RAC's adverse mechanical properties due to the natural defects of recycled coarse aggregate (RCA). However, the performance of SRRAC after thermal exposure will have a great impact on the safety of the structure. In this paper, firstly, the mechanical properties of SRRAC structures after high temperatures exposure were tested, including 24 SRRAC columns and 32 SRRAC beams. Then, the change rules of beams and columns performance with the maximum temperature and replacement percentage were compared. Finally, the formulas to evaluate the residual bearing capacity of SRRAC beams and columns after exposure to high temperatures were established. The experimental results show that the maximum exposure temperature can be judged by the apparent phenomenon and mass loss ratio of RAC. After high temperatures exposure, the mechanical properties of SRRAC beams and columns change significantly, where the degradation of bearing capacity and stiffness is the most obvious. Moreover, it is found that the degradation degree of compression member is more serious than that of flexural member. The formulas of residual bearing capacity established by introducing influence coefficient of material strength agree well with the experimental results.

Development of framework to estimate environmental loads of PSC beam bridges based on LCA

  • Lee, Wan Ryul;Kim, Kyong Ju;Yun, Won Gun;Kim, In Kyum
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.730-731
    • /
    • 2015
  • This study aims at giving the framework to estimate the environmental load at planning and schematic phase. With increasing awareness of environmental issues, the effort to reduce the environmental impacts caused by human activity has been increasingly enlarged. So far most of researches estimating CO2 emissions have analyzed energy consumption based on BOQ (Bills of Quantity) acquired after detailed design. There is also lack of reliability in the estimated environmental impact using the basic unit of a facility at the planning stage, because it uses a limited specific section of historical data. Thus, this study is targeted at developing framework to assess reliable environmental loads based on information available at project early phases by making case-bases from historical design information on PSC Beam Bridge. Historical database is built on the basis of the LCA (Life Cycle Assessment) and in order to set input information for estimating model, the literature about information in an early project phase are reviewed. Using the information available in the planning and schematic design stage, the Framework is presented to estimate the environmental load in an early stage in the project. Developing an environmental load estimation model in accordance with the Framework presented in this study, it is expected that the environmental load in the initial project phase can be estimated more quickly and accurately.

  • PDF

Damping characteristics of CFRP strengthened castellated beams

  • Cyril Thomas Antony Raj;Jyothis Paul Elanhikuzhy;Baskar Kaliyamoorthy
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.685-699
    • /
    • 2023
  • In recent years, Carbon Fibre Reinforced Plastic (CFRP) strengthening is found to be one of the best methods to strengthen steel structures. The fibrous bond can also influence the vibration characteristics of the strengthened element apart from its static strength enhancement property. The main objective of this study is to understand the influence of CFRP strengthening on the dynamic Behaviour of Thin-Webbed Castellated Beams (TWCBs). A detailed experimental investigation was carried out on five sets of beams with varying parameters such as domination of shear (Shear Dominant, Moment Dominant and Moment and Shear Dominant), sectional classification (Plastic and Semi-compact) and perforation geometries (ho/dwratio 0.65 and e/ho ratio 0.3). Free vibration analysis was carried out by exciting the simply supported TWCBs with an impact force generated by a ball dropped from a specific height. Logarithmic decrement method was used to obtain the damping ratio and natural frequencies of vibration were found by Fast Fourier Transform (FFT). Natural frequency showed an increase in a range of 10.5 - 55% for the different sets of castellated beams. An increase of 62.30% was noted in the damping ratio of TWCBs after strengthening which is an indication of improvement in the vibration characteristics of the beam.