Acknowledgement
All calculations are performed on the high-performance cluster "HPC-MARWAN" of the National Center for Scientific and Technical Research (CNRST) in Morocco. The authors would like to thank all the staff of HPC-MARWAN.
References
- C. Latge, F. Groeschel, et al., Megapie spallation target: design, implementation and preliminary tests of the first prototypical spallation target for future ADS, in: Actinide and Fission Product Partitioning and Transmutation Ninth Information Exchange Meeting, Sep 2006, pp. 407-419. Nimes, France.
- G.S. Bauer, M. Salvatores, G. Heusener, MEGAPIE a 1 MW pilot experiment for a liquid metal spallation target, J. Nucl. Mater. 296 (2001) 17, https://doi.org/10.1016/S0022-3115(01)00561-X.
- L. Zanini, H.U. Aebersold, K. Berg, et al., Neutronic and nuclear post-test analysis of MEGAPIE, Part I, Chap 3, 08-04, PSI Bericht Nr. (2008), 1019-0643.
- F. Michel-Sendis, S. Chabod, A. Letourneau, et al., Neutronic performance of the MEGAPIE spallation target under high power proton beam, Nucl. Instrum. Methods Phys. Res., Sect. B 268 (13) (2010) 2257-2271, https://doi.org/10.1016/j.nimb.2010.03.024.
- D.B. Pelowitz (Ed.), MCNPX User's Manual Version 2.7.0, Los Alamos National Laboratory report, 2011. LA-CP-11-00438.
- G.W. McKinney, J.W. Durkee, J.S. Hendricks, M.R. James, D.B. Pelowitz, L.S. Waters, MCNPX 2.5.0 - New Features Demonstrated, American Nuclear Society, LaGrange Park, IL, 2005. LA-UR-04-8695.
- A. Fasso, et al., FLUKA: status and prospective for hadronic applications, in: A. Kling, F. Barao, M. Nakagawa, et al. (Eds.), Proceedings of the Monte Carlo 2000 Conference, Springer, 2001, 2000, pp. 955-960.
- A. Fasso, A. Ferrari, P.R. Sala, Electron-photon transport in FLUKA: status, in: A. Kling, F. Barao, M. Nakagawa, et al. (Eds.), Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, Springer, Berlin, 2001, pp. 159-164, https://doi.org/10.1007/978-3-642-18211-2_27.
- S. Agostinelli, et al., GEANT4 - a simulation toolkit, Nucl. Instrum. Methods A. 506 (2003) 250, https://doi.org/10.1016/S0168-9002(03)01368-8.
- J. Allison, et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270, https://doi.org/10.1109/TNS.2006.869826.
- J. Apostolakis, et al., Geometry and physics of the GEANT4 toolkit for high and medium energy applications, Radiat. Phys. Chem. 78 (2009) 859, https://doi.org/10.1016/j.radphyschem.2009.04.026.
- A. Lamrabet, A. Maghnouj, J. Tajmouati, et al., Production threshold impact on a GEANT4 calculation of the power deposition in a fast domain: MEGAPIE spallation target, Nucl. Sci. Technol. 30 (2019) 75, https://doi.org/10.1007/s41365-019-0603-5.
- M. Asai, M. Verderi, Experiences of the geant4 collaboration, 2017. https://epdep-sft.web.cern.ch/document/experiences-geant4-collaboration-input-makoto-asai-and-marc-verderi.
- A. Lamrabet, A. Maghnouj, J. Tajmouati, et al., Assessment of the power deposition on the MEGAPIE spallation target using the GEANT4 toolkit, Nucl. Sci. Technol. 30 (2019) 54, https://doi.org/10.1007/s41365-019-0590-6.
- CERN/LHCC/95-70, GEANT: an object-oriented toolkit for simulation in HEP, LCRB status report/RD44, 1995.
- G. Santin, D. Strul, D. Lazaro, et al., GATE: a GEANT4-based simulation platform for PET and SPECT integrating movement and time management, IEEE Trans. Nucl. Sci. 50 (2003) 1516-1521, https://doi.org/10.1109/TNS.2003.817974.
- D. Strulab, G. Santin, D. Lazaro, et al., GATE (geant4 application for tomographic emission): a PET/SPECT general-purpose simulation platform, Nucl. Phys. B 125 (2003) 75-79, https://doi.org/10.1016/S0920-5632(03)90969-8.
- Gamos. http://fismed.ciemat.es/GAMOS/.
- P. Arce, J.I. Lagares, L.J. Harkness-Brennan, et al., Gamos: a framework to do Geant4 simulations in different physics fields with an user-friendly interface, Nucl. Instrum. Methods A 735 (2014) 304-313, https://doi.org/10.1016/j.nima.2013.09.036.
- Y. Malyshkin, I. Pshenichnov, I. Mishustin, et al., Neutron production and energy deposition in fissile spallation targets studied with GEANT4 toolkit, Nucl. Instrum. Methods B 289 (2012) 79-90, https://doi.org/10.1016/j.nimb.2012.07.023.
- Y. Malyshkin, et al., Modeling spallation reactions in tungsten and uranium targets with the GEANT4 toolkit, EPJ Web Conf. 21 (2012) 10006, https://doi.org/10.1051/epjconf/20122110006.
- Y. Malyshkin, I. Pshenichnov, I. Mishustin, et al., Monte Carlo modeling of spallation targets containing uranium and americium, Nucl. Instrum. Methods B 334 (2014) 8-17, https://doi.org/10.1016/j.nimb.2014.04.027.
- I. Mishustin, Y. Malyshkin, I. Pshenichnov, et al., Possible production of neutron-rich heavy nuclei in fissile spallation targets, in: Nuclear Physics: Present and Future, W. Greiner, 2015, pp. 151-161, https://doi.org/10.1007/978-3-319-10199-6_15.
- GEANT4 user's guide for application developers, 2013. http://GEANT4.web.cern.ch/GEANT4/UserDocumentation/UsersGuides/ForApplicationDeveloper/BackupVersions/V10.2/html/index.html.
- https://www.scientificlinux.org/.
- CLHEPda class library for high energy physics. http://projclhep.web.cern.ch/proj-clhep/.
- ROOT a data analysis framework. https://root.cern.ch/.
- Qt | Cross-platform software development for embedded & desktop. https://www.qt.io/.
- J. Apostolakis, M. Asai, G. Cosmo, et al., Parallel Geometries in Geant4: foundation and recent enhancements, IEEE Nucl. Sci. Sympos. (2008) 883-886, https://doi.org/10.1109/NSSMIC.2008.4774535.
- D.P. Kroese, R.Y. Rubinstein, Monte-Carlo methods, WIREs Comp. Stat. 4 (1) (2012) 48-58, https://doi.org/10.1002/wics.194.
- P. L'Ecuyer, M. Mandjes, B. Tuffin, Importance sampling in rare event simulation, in: G. Rubino, B. Tuffin (Eds.), Rare Event Simulation Using Monte Carlo Methods 17-38, John Wiley & Sons, Ltd, 2009, 978-0-470-77269-0.
- M. Dressel, Geometrical importance sampling in Geant4: from design to verification, CERN-OPEN-2003-048 (2003).
- S.L. Meo, M.A. Cortes-Giraldo, C. Massimi, et al., GEANT4 simulations of the n_TOF spallation source and their benchmarking, Eur. Phys. J. A 51 (2015) 160, https://doi.org/10.1140/epja/i2015-15160-6.
- B. Andersson, G. Gustafson, B. Nilsson-Almqvist, et al., A model for low-pT hadronic reactions with generalizations to hadronnucleus and nucleusnucleus collisions, Nucl. Phys. B 281 (1987) 289-309, https://doi.org/10.1016/0550-3213(87)90257-4.
- H. Pi, An event generator for interactions between hadrons and nuclei-FRITIOF version 7.0, Comput. Phys. Commun. 71 (1992) 173-192, https://doi.org/10.1016/0010-4655(92)90082-a.
- J.M. Quesada, V. Ivanchenko, A. Ivanchenko, et al., Recent developments in pre-equilibrium and de-excitation models in GEANT4, Prog. Nucl. Sci. Technol. 2 (2011) 936-941, https://doi.org/10.15669/pnst.2.936.
- J. Cugnon, J. Knoll, Y. Yariv, Event by event emission-pattern analysis of the intra-nuclear cascade, Phys. Lett. B 109 (3) (1982) 167-170. https://doi.org/10.1016/0370-2693(82)90745-6
- J. Cugnon, Proton-nucleus interactions at high energies, Nucl. Phys., A (462) (1987) 751-780. https://doi.org/10.1016/0375-9474(87)90575-6
- A. Boudard, J. Cugnon, J.-C. David, et al., New potentialities of the Liege intranuclear cascade model for reactions induced by nucleons and light charged particles, Phys. Rev. C 87 (2013), 014606, https://doi.org/10.1103/PhysRevC.87.014606.
- D. Mancusi, A. Boudard, J. Cugnon, et al., Extension of the Liege intranuclear-cascade model to reactions induced by light nuclei, Phys. Rev. C 90 (2014), 054602, https://doi.org/10.1103/PhysRevC.90.054602.
- J. Cugnon, A. Boudard, J.-C. David, et al., Processes involving few degrees of freedom in the frame of Intranuclear Cascade approaches, Eur. Phys. J. Plus 131 (2016) 169, https://doi.org/10.1140/epjp/i2016-16169-4.
- P. Kaitaniemi, A. Boudard, S. Leray, et al., INCL intra-nuclear cascade and ABLA de-excitation models in GEANT4, Prog. Nucl. Sci. Technol. 2 (2011) 788-793, https://doi.org/10.15669/pnst.2.788.
- J. Benlliure, et al., Calculated nuclide production yields in relativistic collisions of fissile nuclei, Nucl. Phys. A 628 (3) (1998) 458-478, https://doi.org/10.1016/S0375-9474(97)00607-6.
- J.J. Gaimard, K.H. Schmidt, A reexamination of the Abrasion-Ablation model for the description of the nuclear Lowfragmention reaction, Nucl. Phys., A 531 (1991) 709-745. https://doi.org/10.1016/0375-9474(91)90748-U
- A.R. Junghans, et al., Projectilefragment yields as a probe for the collective enhancement in the nuclear level density, Nucl. Phys., A 629 (1998) 635-655. https://doi.org/10.1016/S0375-9474(98)00658-7
- http://www-nds.iaea.org/spallations.
- J.C. David, Spallation reactions: a successful interplay between modeling and applications, Eur. Phys. J. A 51 (2015) 68, https://doi.org/10.1140/epja/i2015-15068-1.
- A.R. Garcia, E. Mendoza, D. Cano-Ott, Validation of the Thermal Neutron Physics in GEANT4, Department of Energy, Madrid, 2013.
- K. Hartling, B. Ciungu, G. Li, et al., The effects of nuclear data library processing on Geant4 and MCNP simulations of the thermal neutron scattering law, Nucl. Instrum. Methods Phys. Res. A 891 (2018) 25-31, https://doi.org/10.1016/j.nima.2018.02.053.
- G. Li, G. Bentoumi, Z. Tun, et al., Application of GEANT4 to the data analysis of thermal neutron scattering experiments, CNL Nucl. Rev. 7 (1) (2018) 11-17, https://doi.org/10.12943/CNR.2017.00002.
- G. Li, G. Bentoumi, K. Hartling, et al., Validation of ENDF/B-VIII thermal neutron scattering data of heavy water by differential cross section measurements at various temperatures, Ann. Nucl. Energy 135 (2020) 106932, https://doi.org/10.1016/j.anucene.2019.07.034.
- S. Chaboda, G. Fionib, A. Letourneaua, et al., Modelling of fission chambers in current mode - analytical approach, Nucl. Instrum. Methods A 566 (2006) 633-653, https://doi.org/10.1016/j.nima.2006.06.067.
- S. CHABOD, developpement et mod elisation de chambres a fission pour les hauts flux, mise en application au RHF (ILL) et a MEGAPIE (PSI), These de doctorat, Universite; Paris XI. France, 2006.
- S. Panebianco, Neutronic characterization of the MEGAPIE target, Ann. Nucl. Energy 36 (3) (2009) 350-354, https://doi.org/10.1016/j.anucene.2008.12.013.
- H.W. Bertini, Low-energy intranuclear cascade calculations, Phys. Rev. 131 (4) (1963) 1801-1821. https://doi.org/10.1103/PhysRev.131.1801
- R. Hofstadter, Electron scattering and nuclear structure, Rev. Mod. Phys. 28 (3) (1956) 214-254. https://doi.org/10.1103/RevModPhys.28.214
- F. Michel-Sendis, A. Letourneau, S.Panebianco, Neutronics of the MEGAPIE target: inner neutron flux characterization, ARIA 2008, 1st workshop on accelerator radiation induced activation, PSI, Switzerland.
- L. Zanini, A. Aiani, A neutron booster for the SINQ neutron source using thin fissile layers, in: International Atomic Energy Agency (IAEA) : IAEA, 2010.