DOI QR코드

DOI QR Code

GEANT4 characterization of the neutronic behavior of the active zone of the MEGAPIE spallation target

  • Lamrabet, Abdesslam (Department of Physics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah) ;
  • Maghnouj, Abdelmajid (Department of Physics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah) ;
  • Tajmouati, Jaouad (Department of Physics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah) ;
  • Bencheikh, Mohamed (Department of Physics, Faculty of Sciences and Technology Mohammedia, Hassan II University of Casablanca)
  • Received : 2020.06.26
  • Accepted : 2021.05.03
  • Published : 2021.10.25

Abstract

The increasing interest that GEANT4 is gaining nowadays, because of its special capabilities, prompted us to address its reliability in neutronic calculation for the realistic and complex spallation target MEGAPIE of the Paul Scherrer Institute of Switzerland. In this paper we have specifically addressed the neutronic characterization of the active zone of this target. Three physical quantities are evaluated: neutron flux spectra and total neutron fluxes on target's z-axis, and the neutron yield as a function of the target's altitude and radius. Comparison of the obtained results with those of the MCNPX reference code and some experimental measurements have confirmed the impact of the geometrical and proton beam models on the neutron fluxes. It has also allowed to reveal the intrinsic influence of the code type. The resulting differences reach a factor of ~2 for the beam model and 4-18% for the other parameters cumulated. The analysis of the neutron yield has led us to conclude that: 1) Increasing the productivity of the MEGAPIE target cannot be achieved simply by increasing the thickness of the target, if the irradiation parameters are not modified. 2) The size of the spallation area needs to be redefined more precisely.

Keywords

Acknowledgement

All calculations are performed on the high-performance cluster "HPC-MARWAN" of the National Center for Scientific and Technical Research (CNRST) in Morocco. The authors would like to thank all the staff of HPC-MARWAN.

References

  1. C. Latge, F. Groeschel, et al., Megapie spallation target: design, implementation and preliminary tests of the first prototypical spallation target for future ADS, in: Actinide and Fission Product Partitioning and Transmutation Ninth Information Exchange Meeting, Sep 2006, pp. 407-419. Nimes, France.
  2. G.S. Bauer, M. Salvatores, G. Heusener, MEGAPIE a 1 MW pilot experiment for a liquid metal spallation target, J. Nucl. Mater. 296 (2001) 17, https://doi.org/10.1016/S0022-3115(01)00561-X.
  3. L. Zanini, H.U. Aebersold, K. Berg, et al., Neutronic and nuclear post-test analysis of MEGAPIE, Part I, Chap 3, 08-04, PSI Bericht Nr. (2008), 1019-0643.
  4. F. Michel-Sendis, S. Chabod, A. Letourneau, et al., Neutronic performance of the MEGAPIE spallation target under high power proton beam, Nucl. Instrum. Methods Phys. Res., Sect. B 268 (13) (2010) 2257-2271, https://doi.org/10.1016/j.nimb.2010.03.024.
  5. D.B. Pelowitz (Ed.), MCNPX User's Manual Version 2.7.0, Los Alamos National Laboratory report, 2011. LA-CP-11-00438.
  6. G.W. McKinney, J.W. Durkee, J.S. Hendricks, M.R. James, D.B. Pelowitz, L.S. Waters, MCNPX 2.5.0 - New Features Demonstrated, American Nuclear Society, LaGrange Park, IL, 2005. LA-UR-04-8695.
  7. A. Fasso, et al., FLUKA: status and prospective for hadronic applications, in: A. Kling, F. Barao, M. Nakagawa, et al. (Eds.), Proceedings of the Monte Carlo 2000 Conference, Springer, 2001, 2000, pp. 955-960.
  8. A. Fasso, A. Ferrari, P.R. Sala, Electron-photon transport in FLUKA: status, in: A. Kling, F. Barao, M. Nakagawa, et al. (Eds.), Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, Springer, Berlin, 2001, pp. 159-164, https://doi.org/10.1007/978-3-642-18211-2_27.
  9. S. Agostinelli, et al., GEANT4 - a simulation toolkit, Nucl. Instrum. Methods A. 506 (2003) 250, https://doi.org/10.1016/S0168-9002(03)01368-8.
  10. J. Allison, et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270, https://doi.org/10.1109/TNS.2006.869826.
  11. J. Apostolakis, et al., Geometry and physics of the GEANT4 toolkit for high and medium energy applications, Radiat. Phys. Chem. 78 (2009) 859, https://doi.org/10.1016/j.radphyschem.2009.04.026.
  12. A. Lamrabet, A. Maghnouj, J. Tajmouati, et al., Production threshold impact on a GEANT4 calculation of the power deposition in a fast domain: MEGAPIE spallation target, Nucl. Sci. Technol. 30 (2019) 75, https://doi.org/10.1007/s41365-019-0603-5.
  13. M. Asai, M. Verderi, Experiences of the geant4 collaboration, 2017. https://epdep-sft.web.cern.ch/document/experiences-geant4-collaboration-input-makoto-asai-and-marc-verderi.
  14. A. Lamrabet, A. Maghnouj, J. Tajmouati, et al., Assessment of the power deposition on the MEGAPIE spallation target using the GEANT4 toolkit, Nucl. Sci. Technol. 30 (2019) 54, https://doi.org/10.1007/s41365-019-0590-6.
  15. CERN/LHCC/95-70, GEANT: an object-oriented toolkit for simulation in HEP, LCRB status report/RD44, 1995.
  16. G. Santin, D. Strul, D. Lazaro, et al., GATE: a GEANT4-based simulation platform for PET and SPECT integrating movement and time management, IEEE Trans. Nucl. Sci. 50 (2003) 1516-1521, https://doi.org/10.1109/TNS.2003.817974.
  17. D. Strulab, G. Santin, D. Lazaro, et al., GATE (geant4 application for tomographic emission): a PET/SPECT general-purpose simulation platform, Nucl. Phys. B 125 (2003) 75-79, https://doi.org/10.1016/S0920-5632(03)90969-8.
  18. Gamos. http://fismed.ciemat.es/GAMOS/.
  19. P. Arce, J.I. Lagares, L.J. Harkness-Brennan, et al., Gamos: a framework to do Geant4 simulations in different physics fields with an user-friendly interface, Nucl. Instrum. Methods A 735 (2014) 304-313, https://doi.org/10.1016/j.nima.2013.09.036.
  20. Y. Malyshkin, I. Pshenichnov, I. Mishustin, et al., Neutron production and energy deposition in fissile spallation targets studied with GEANT4 toolkit, Nucl. Instrum. Methods B 289 (2012) 79-90, https://doi.org/10.1016/j.nimb.2012.07.023.
  21. Y. Malyshkin, et al., Modeling spallation reactions in tungsten and uranium targets with the GEANT4 toolkit, EPJ Web Conf. 21 (2012) 10006, https://doi.org/10.1051/epjconf/20122110006.
  22. Y. Malyshkin, I. Pshenichnov, I. Mishustin, et al., Monte Carlo modeling of spallation targets containing uranium and americium, Nucl. Instrum. Methods B 334 (2014) 8-17, https://doi.org/10.1016/j.nimb.2014.04.027.
  23. I. Mishustin, Y. Malyshkin, I. Pshenichnov, et al., Possible production of neutron-rich heavy nuclei in fissile spallation targets, in: Nuclear Physics: Present and Future, W. Greiner, 2015, pp. 151-161, https://doi.org/10.1007/978-3-319-10199-6_15.
  24. GEANT4 user's guide for application developers, 2013. http://GEANT4.web.cern.ch/GEANT4/UserDocumentation/UsersGuides/ForApplicationDeveloper/BackupVersions/V10.2/html/index.html.
  25. https://www.scientificlinux.org/.
  26. CLHEPda class library for high energy physics. http://projclhep.web.cern.ch/proj-clhep/.
  27. ROOT a data analysis framework. https://root.cern.ch/.
  28. Qt | Cross-platform software development for embedded & desktop. https://www.qt.io/.
  29. J. Apostolakis, M. Asai, G. Cosmo, et al., Parallel Geometries in Geant4: foundation and recent enhancements, IEEE Nucl. Sci. Sympos. (2008) 883-886, https://doi.org/10.1109/NSSMIC.2008.4774535.
  30. D.P. Kroese, R.Y. Rubinstein, Monte-Carlo methods, WIREs Comp. Stat. 4 (1) (2012) 48-58, https://doi.org/10.1002/wics.194.
  31. P. L'Ecuyer, M. Mandjes, B. Tuffin, Importance sampling in rare event simulation, in: G. Rubino, B. Tuffin (Eds.), Rare Event Simulation Using Monte Carlo Methods 17-38, John Wiley & Sons, Ltd, 2009, 978-0-470-77269-0.
  32. M. Dressel, Geometrical importance sampling in Geant4: from design to verification, CERN-OPEN-2003-048 (2003).
  33. S.L. Meo, M.A. Cortes-Giraldo, C. Massimi, et al., GEANT4 simulations of the n_TOF spallation source and their benchmarking, Eur. Phys. J. A 51 (2015) 160, https://doi.org/10.1140/epja/i2015-15160-6.
  34. B. Andersson, G. Gustafson, B. Nilsson-Almqvist, et al., A model for low-pT hadronic reactions with generalizations to hadronnucleus and nucleusnucleus collisions, Nucl. Phys. B 281 (1987) 289-309, https://doi.org/10.1016/0550-3213(87)90257-4.
  35. H. Pi, An event generator for interactions between hadrons and nuclei-FRITIOF version 7.0, Comput. Phys. Commun. 71 (1992) 173-192, https://doi.org/10.1016/0010-4655(92)90082-a.
  36. J.M. Quesada, V. Ivanchenko, A. Ivanchenko, et al., Recent developments in pre-equilibrium and de-excitation models in GEANT4, Prog. Nucl. Sci. Technol. 2 (2011) 936-941, https://doi.org/10.15669/pnst.2.936.
  37. J. Cugnon, J. Knoll, Y. Yariv, Event by event emission-pattern analysis of the intra-nuclear cascade, Phys. Lett. B 109 (3) (1982) 167-170. https://doi.org/10.1016/0370-2693(82)90745-6
  38. J. Cugnon, Proton-nucleus interactions at high energies, Nucl. Phys., A (462) (1987) 751-780. https://doi.org/10.1016/0375-9474(87)90575-6
  39. A. Boudard, J. Cugnon, J.-C. David, et al., New potentialities of the Liege intranuclear cascade model for reactions induced by nucleons and light charged particles, Phys. Rev. C 87 (2013), 014606, https://doi.org/10.1103/PhysRevC.87.014606.
  40. D. Mancusi, A. Boudard, J. Cugnon, et al., Extension of the Liege intranuclear-cascade model to reactions induced by light nuclei, Phys. Rev. C 90 (2014), 054602, https://doi.org/10.1103/PhysRevC.90.054602.
  41. J. Cugnon, A. Boudard, J.-C. David, et al., Processes involving few degrees of freedom in the frame of Intranuclear Cascade approaches, Eur. Phys. J. Plus 131 (2016) 169, https://doi.org/10.1140/epjp/i2016-16169-4.
  42. P. Kaitaniemi, A. Boudard, S. Leray, et al., INCL intra-nuclear cascade and ABLA de-excitation models in GEANT4, Prog. Nucl. Sci. Technol. 2 (2011) 788-793, https://doi.org/10.15669/pnst.2.788.
  43. J. Benlliure, et al., Calculated nuclide production yields in relativistic collisions of fissile nuclei, Nucl. Phys. A 628 (3) (1998) 458-478, https://doi.org/10.1016/S0375-9474(97)00607-6.
  44. J.J. Gaimard, K.H. Schmidt, A reexamination of the Abrasion-Ablation model for the description of the nuclear Lowfragmention reaction, Nucl. Phys., A 531 (1991) 709-745. https://doi.org/10.1016/0375-9474(91)90748-U
  45. A.R. Junghans, et al., Projectilefragment yields as a probe for the collective enhancement in the nuclear level density, Nucl. Phys., A 629 (1998) 635-655. https://doi.org/10.1016/S0375-9474(98)00658-7
  46. http://www-nds.iaea.org/spallations.
  47. J.C. David, Spallation reactions: a successful interplay between modeling and applications, Eur. Phys. J. A 51 (2015) 68, https://doi.org/10.1140/epja/i2015-15068-1.
  48. A.R. Garcia, E. Mendoza, D. Cano-Ott, Validation of the Thermal Neutron Physics in GEANT4, Department of Energy, Madrid, 2013.
  49. K. Hartling, B. Ciungu, G. Li, et al., The effects of nuclear data library processing on Geant4 and MCNP simulations of the thermal neutron scattering law, Nucl. Instrum. Methods Phys. Res. A 891 (2018) 25-31, https://doi.org/10.1016/j.nima.2018.02.053.
  50. G. Li, G. Bentoumi, Z. Tun, et al., Application of GEANT4 to the data analysis of thermal neutron scattering experiments, CNL Nucl. Rev. 7 (1) (2018) 11-17, https://doi.org/10.12943/CNR.2017.00002.
  51. G. Li, G. Bentoumi, K. Hartling, et al., Validation of ENDF/B-VIII thermal neutron scattering data of heavy water by differential cross section measurements at various temperatures, Ann. Nucl. Energy 135 (2020) 106932, https://doi.org/10.1016/j.anucene.2019.07.034.
  52. S. Chaboda, G. Fionib, A. Letourneaua, et al., Modelling of fission chambers in current mode - analytical approach, Nucl. Instrum. Methods A 566 (2006) 633-653, https://doi.org/10.1016/j.nima.2006.06.067.
  53. S. CHABOD, developpement et mod elisation de chambres a fission pour les hauts flux, mise en application au RHF (ILL) et a MEGAPIE (PSI), These de doctorat, Universite; Paris XI. France, 2006.
  54. S. Panebianco, Neutronic characterization of the MEGAPIE target, Ann. Nucl. Energy 36 (3) (2009) 350-354, https://doi.org/10.1016/j.anucene.2008.12.013.
  55. H.W. Bertini, Low-energy intranuclear cascade calculations, Phys. Rev. 131 (4) (1963) 1801-1821. https://doi.org/10.1103/PhysRev.131.1801
  56. R. Hofstadter, Electron scattering and nuclear structure, Rev. Mod. Phys. 28 (3) (1956) 214-254. https://doi.org/10.1103/RevModPhys.28.214
  57. F. Michel-Sendis, A. Letourneau, S.Panebianco, Neutronics of the MEGAPIE target: inner neutron flux characterization, ARIA 2008, 1st workshop on accelerator radiation induced activation, PSI, Switzerland.
  58. L. Zanini, A. Aiani, A neutron booster for the SINQ neutron source using thin fissile layers, in: International Atomic Energy Agency (IAEA) : IAEA, 2010.