• Title/Summary/Keyword: Impact Angle

Search Result 772, Processing Time 0.028 seconds

Influence of Depth Differences by Setting 3D Stereoscopic Convergence Point on Presence, Display Perception, and Negative Experiences (스테레오 영상의 깊이감에 따른 프레즌스, 지각된 특성, 부정적 경험의 차이)

  • Lee, SangWook;Chung, Donghun
    • Journal of Broadcast Engineering
    • /
    • v.19 no.1
    • /
    • pp.44-55
    • /
    • 2014
  • The goal of 3D stereoscopy is not only to maximize positive experiences (such as sense of realism) by adding depth information to 2D video but to also minimize negative experiences (such as fatigue). This study examines the impact of different depth levels induced by adjusting 3D camera convergences on positive and negative experiences and finds an optimal parameter for viewers. The results show that there are significant differences among depth levels on spatial involvement, realistic immersion, presence, depth perception, screen transmission, materiality, shape perception, spatial extension and display perception. There are also significant differences for fatigue and unnaturalness. This study suggests that reducing the camera convergence angle of an object by $0.17^{\circ}$ behind the object is the optimal parameter in a 3D stereoscopic setting.

Influence of intake runner cross section design on the engine performance parameters of a four stroke, naturally aspirated carbureted SI engine

  • Singh, Somendra Pratap;Kumar, Vasu;Gupta, Dhruv;Kumar, Naveen
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • The current scenario of the transportation sector reflects the urgent need to address issues such as depletion of traditional fuel reserves and ever growing pollution levels. Researchers around the world are focussing on alternatives as well as optimisation of currently employed devices to reduce the pollution levels generated by the commonly used fuels. One such optimisation involves the study of air flow within the intake manifolds of SI engines. It is a well-known fact that alterations in the air manifolds of engines have a significant impact on the engine performance parameters, fuel consumption and emission levels. Previous works have demonstrated the impacts of runner lengths, diameter, plenum volume, taper angle of distribution manifolds and other factors on in-cylinder fluid motion and engine performance. However, a static setup provides an optimal configuration only at a specific engine speed. This paper aims to investigate the variations in the same parameters on a four stroke, naturally aspirated single cylinder SI engine through varying the cross section design over the intake runner with the aid of Computational Fluid Dynamics. The system consists of segments that form the intake runner with projections on the inside that allow various permutations of the intake runner segments. The various configurations provide the optimised fluid flow characteristics within the intake manifold at specific engine speed intervals. The variations such as turbulence, air fuel mixing are analysed using the three dimensional CFD software FLUENT. The results can be used further for developing an automated or manually adjustable intake manifold.

A Study on the Reduction of Building Energy Consumption and Generation of BIPV System According to the Increase of the Number of Floors in Office Building (사무소건물 층수 증가에 따른 BIPV 발전량과 건물에너지소비량 저감에 관한 연구)

  • Oh, Myung-Hwan;Yoon, Jong-Ho;Shin, Woo-Cheol
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.36-41
    • /
    • 2011
  • BIPV system that can alternate building envelope by making materials of PV module should be considered in initial design step for applying PV system efficiently in office building. Mean while, area of the building skin also increases as the number of floors increases, but the valid area that can apply BIPV system in effect decreases relatively. Despite of this weak point, installing BIPV system is still being evaluated as the only measure left that can reduce electronic energy consumption in the building. Therefore, the impact on building energy consumption according to the increase of the number of floors when BIPV system is applied in the building was analyzed. And it will be used as basic information for application of BIPV in office building. Conomic about application of BIPV is interpreted to be secured within the 10 story high. Forover the 11 floors, the methods of increasing the contribution ratio produced by BIPV system through the optimization of install angle and increase in install area of south, high efficiency should be considered. The ways to reduce basic load by integrated design with another renewable energy besides BIPV should be found. Later, the study on the total building energy comsumption with PV generation according to the various type of the basic load and ratio of the width and depth will be performed based on this study.

  • PDF

Dynamic Response Analysis of 2.5MW Wind Turbine Gearbox with Flexible Pins (유연핀을 적용한 2.5MW급 풍력발전기용 기어박스의 동응답 해석)

  • Cho, Jin-Rae;Jeong, Ki-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • This study is concerned with the numerical investigation of dynamic characteristics of 2.5MW-class wind turbine gearbox in which the misalignment improvement of plenary gear shafts by the flexible pins and the dynamic impact response are analyzed by the finite element method. The tooth contact between gears is modelled using the line element having the equivalent tooth stiffness and the contact ratio to accurately and effectively reflect the load transmission in the internal complex gear system. The equivalent tooth stiffness is calculated by utilizing the tooth deformation analysis and the impulse torque is applied to the input shaft for the dynamics response characteristic analysis. Through the numerical experiments, the equivalent tooth stiffness model was validated and the misalignment improvement of planetary gear shafts was confirmed from the comparison with the cases of fixed shafts at one and both ends.

A study on the Thermal Deformation of Line Heated TMCP and Normalizing Steel (선상가열한 TMCP 및 Normalizing 강재의 열변형에 관한 연구)

  • Kim, Jeong-Tae;Lee, Kwang-Sung;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.46-51
    • /
    • 2016
  • The TMCP steel has expanded in the marine structure during manufacturing process because of its excellent weld-ability and impact toughness. In the case of merchant ships, coverage of TMCP steel has been used widely on over DH36 Classifications material. The line heating process is applied to the outer surface of the steel plate for the shipbuilding. In this study, We compared between TMCP and normalizing steel for shipbuilding by analyzing some basic data through performing the natural cooling after the line heating. The experimental results show the angular misalignment changes in line heating. Heated surface of normalizing steel material expanded to $-0.3^{\circ}$ and reduced to $+0.2^{\circ}$ after cooling. And during cooling at $194^{\circ}C$ for 1,500 seconds, Angular Misalignment began from - direction to + direction, passed the critical point to the default at 2,200 seconds and did not take place any more at $103^{\circ}C$ after the 2,700 seconds. Angular Misalignment results of TMCP steels and Normalizing steel material show same angular misalignment lasted 1,200 seconds, TMCP steel has given more expansion and contraction angle which is $0.2^{\circ}$ than that of the Normalizing steel. Length difference between expansion and contraction is about 0.3 mm.

A Study of Golf Swing Errors of Amateur Golfer (아마추어골퍼들의 스윙 오류에 관한 연구)

  • Lim, Jung;Jeon, Chul-Woo;Chung, Chae-Wook
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.165-174
    • /
    • 2006
  • The purpose of this study was to review the relevant literature about coaching and thereupon, survey the coaching methods used for golfer lesson to reinterpret them and thereby, describe in view of kinetics the swing errors committed frequently by amateur golfers and suggest more scientific golfer coaching methods. For this purpose, kinetic elements were divided into precision and power ones and therewith, the variables affecting such elements were identified. On the other hand, swings were divided into address, take-back, back-swing, back-swing top, down-swing, impact and follow-through to determine 20 variables for each form and thereby, define their errors to determine the relations between their frequency and errors. For this study, a total of 60 amateur golfer were sampled, and their swing forms were photographed with two high-speed digital cameras, and the resultant images were analyzed to determine the errors of each form kinetically, which would be analyzed again with the program V1-5000. The results of this study can be summarized as follows; The kinetic elements could be identified as precision, power and precise power. Thus, setup and trajectory were classified into precision elements, while differences of inter-joint angles, cocking and delayed hitting. Lastly, timing and axial movement were classified into precise power elements. Three errors were identified in association with setup. The errors related with trajectory elements accounted for most (7) of the 20 errors. Three errors were determined for inter-joint angle differences, and one error was associated with cocking and delayed hitting. Lastly, one error was classified into timing error, while five errors were associated with axial movement. Finally, as a result of arranging the errors into a cross table, it was found that the errors were associated with each other between take-back and back-swing, take-back and follow-through, back-swing and back-swing top, and between back-swing and down-swing. Namely, an error would lead to other error repeatedly. So, it is more effective to identify all the errors for every form and correct them comprehensively rather than single out the errors and correct them one by one.

Changes in Shear Strength of Bottom ash through the Particle Breakage (입자파쇄에 따른 Bottom ash의 전단강도 변화)

  • Yun, Tae-Kang;Son, Young-Hwan;Park, Jae-Sung;Noh, Soo-Kack;Bong, Tae-ho;Kim, Dong-Geun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.99-105
    • /
    • 2015
  • Bottom ash and fly ash are by-product from thermoelectric power plants. Fly ash is recycled to various field. However, though an output of bottom ash have increased each year, most of them is reclaimed in ash landfill. It is necessary to find a solution that bottom ash is recycled economically and know characteristics of bottom ash to recycle. It is goal to investigate engineering properties of bottom ash, especially the particle breakage, to recycle that. Bottom ash was crushed by impact method according to compaction energy and then compared with or original sample and crushed it in terms of particle size distribution and characteristics of strength. In result, after crushed it, particle finer was increased, especially 2~0.85 mm size, than original. It was displayed a tendency that internal friction of crushed sample was decreased but cohesion of it was not. Therefore, it is important to investigate the engineering properties of bottom ash in terms of the particle breakage to use construction materials for various field.

The Development of Realistic Virtual Reality Game with Leap Motion Reflected Physical strength and Score Characters (물리적인 힘과 스코어 캐릭터를 반영한 립모션 체험형 가상현실 게임개발)

  • Park, Gangrae;Lee, Byungseok;Kim, Seongdong;Chin, Seongah
    • Journal of Korea Game Society
    • /
    • v.16 no.4
    • /
    • pp.69-78
    • /
    • 2016
  • With the development of game technology, the realistic game graphics, interface technology, and various content services with immersion are being required in the content area. NUI has been developed through CLI and GUI. Unlike the conventional methods, it is an interface that could be the intuitive and realistic interface for human as a natural action realized. we propose a boxing simulation game using leap motion of it. Providing a realistic 3D experimental environment through VR headsets game, we also propose a method that can be calculated the scores if the user-controlled interface (fist) could be to punch the target (sandbag) of the internal in accordance with changes of the angle of target impact with the physical characteristics.

AE Characteristic of Polyethylene Pipe under various defects (다양한 결함에 대한 폴리에틸렌 배관의 음향방출 특성)

  • Nam Ki Woo;Lee Si Yoon;Ahn Seok Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.1-7
    • /
    • 2004
  • The polyethylene pipe can use semi-permanent because of the high corrosion resistance with chemical stability. In addition to, there is the merit that is an easy to establish and to maintain. However, as the reason that it is simply degraded when the polyethylene pipe was exposed to the outside, mainly it is used to lay under the ground with low-pressure gas transportation pipe. In this study, the nondestructive evaluation method was used to maintain the integrity of the polyethylene pipe. We simulated the various defects on the polyethylene pipes, and then the AE signal occurred according to the impact test of steel ball was evaluated by the acoustic emission method. From the results, the waveform and dominant frequency could be distinguishing from the defect shapes of polyethylene pipe. Especially, in the case of notch defect, the AE signals occur different by the angle and depth of the notch.

  • PDF

An Assessment of Ecological Risk by Landslide Susceptibility in Bukhansan National Park (산사태취약성 분석을 통한 북한산국립공원의 생태적 위험도 평가)

  • Kim, Kyung-Tae;Jung, Sung-Gwan;You, Ju-Han;Jang, Gab-Sue
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.2
    • /
    • pp.119-127
    • /
    • 2008
  • This research managed to establish the space information on incidence factors of landslide targeting Bukhansan National Park and aimed at suggesting a basic data for disaster prevention of a landslide for the period to come in Bukhansan National Park through drawing up the map indicating vulnerability to a landslide and ecological risks by the use of overlay analysis and adding-up estimation matrix analysis methods. This research selected slope angle, slope aspect, slope length, drainage, vegetation index(NDVI) and land use as an assessment factor of a landslide and constructed the spatial database at a level of '$30m\times30m$' resolution. The analysis result was that there existed high vulnerability to a landslide almost all over Uidong and Dobong valleys. As for ecological risks, Dobong valley, Yongueocheon valley, Jeongneung valley and Pyeongchang valley were analyzed to be higher, so it is judged that the impact on a landslide risk should be also considered in time of establishing a management plan for these districts for the time to come.