• Title/Summary/Keyword: Impact Angle

Search Result 772, Processing Time 0.022 seconds

The Biomechanical Comparison of Running Shoes According to the Difference of Insole (인솔 차이에 따른 런닝화의 운동역학적 비교)

  • Jin, Young-Wan;Shin, Sung-Hwon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.51-59
    • /
    • 2007
  • These studies show that I applied to functional insole (a specific A company) for minimizing shocks and sprain people's ankle arising from running. How to an effect on human body which studied a kinematics and kinetics from 10 college students during experiments. This study imposes several conditions by barefoot, normal running shoes and put functional insole shoes ran under average $2.0{\pm}0.24\;m$/sec by motion analysis and ground reaction force that used to specific A company. First of all, motion analysis was caused by achilles tendon angle, angle of the lower leg, angle of the knee, initial sole angle and barefoot angle. The result of comparative analysis can be summarized as below. Motion analysis showed that statically approximates other results from achilles tendon angle (p<.01), initial ankle angle(p<.05), initial sole angle(p<.001) and barefoot angle(p<.001). Ground reaction force also showed that statically approximates other results from impact peak timing (p<.001), Maximum loading rate(p<.001), Maximum loading rate timing (p<.001) and impulse of first 20 percent (p<.001). Above experiment values known that there was statically difference between Motion analysis and Ground reaction force under absorbing of the functional insole shoes which was not have an effect on our body for kinetics and kinematics.

Numerical estimation of errors in drop angle during drop tests of IP-Type metallic transport containers for radioactive materials

  • Lim, Jongmin;Yang, Yun Young;Lee, Ju-chan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1878-1886
    • /
    • 2021
  • For industrial package (IP)-type transport containers for radioactive materials, a free drop test should be conducted under regulatory conditions. Owing to various uncertainties observed during the drop test, errors in drop angles inevitably occur. In IP-type metal transport containers in which the container directly impacts onto a rigid target without any shock absorbing materials, the error in the drop angle due to a slight misalignment makes a significant difference from the ideal drop. In particular, in a vertical drop, the error in the drop angle causes a strong secondary impact. In this paper, a numerical method is proposed to estimate the error in the drop angle occurring during the test. To determine this error, an optimization method accompanying a computational drop analysis is proposed, and a surrogate model is introduced to ensure calculation efficiency. Effectiveness of the proposed method is validated by performing the verification and comparison between the test and the analysis applied with the drop angle error.

RELATIONSHIPS BETWEEN MANDIBULAR ANGLE FRACTURE AND STATE OF THE LOWER THIRD MOLAR (하악제3대구치의 존재양상과 하악우각부 골절과의 관계)

  • Kim, Hee-Kwang
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.6
    • /
    • pp.530-535
    • /
    • 2004
  • Objectives. The purpose of this study was to evaluate mandibular third molars as risk factors for angle fracture in a patient sample with fractured mandible. Materials and methods. The medical records and panoramic radiographs of 107 patients with mandibular fractures were examined. The presence and absence and degree of impaction of the lower third molar were assessed for each patient and related to the occurrence of fracture of the mandibular angle. Data were also collected for age, sex and mechanism of injury. Data were analyzed by a chisquare statistics and Student t test. Result. The incidence of mandibular angle fracture was found to be significantly greater when a lower third molar was present(p <0.05) especially at class III state.(p < 0.05)(by Pell & Gregory system) Of the 78 patients with a lower third molar, 46(58.97%) had angle fractures. Of the 29 without a lower third molar, 24(82.76%) had not angle fractures. Conclusion. The result of this study showed that the mandibular angle that have a lower third molar is more susceptible to fracture when exposed to an impact than an angle without an lower third molar.

Three-Dimensional Modeling for Impact Behavior Analysis (충돌시 3차원 거동특성 해석을 위한 모델링)

  • 하정섭;이승종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.353-356
    • /
    • 2002
  • In vehicle accidents, the rolling, pitching, and yawing which are produced by collisions affect the motions of vehicle. Therefore, vehicle behavior under impact situation should be analyzed in three-dimension. In this study, three-dimensional vehicle dynamic equations based on impulse-momentum conservation principles under vehicle impact are introduced for simulation. This analysis has been performed by the real vehicle impact data from JARI and RICSAC. This study suggested each system modeling such as suspension, steering, brake and tire as well as the appropriate vehicle behavior simulation model with respect to pre and post impact.

  • PDF

A safety assessment by Risk Analysis Method on wheelchair occupant in side impact (측방충돌시 휠체어 탑승자의 위험도 분석에 의한 안전성평가)

  • 김성민;김성재;강태건;전병호;김경훈;문무성;홍정화
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.16-16
    • /
    • 2003
  • In this study, for a safety assessment of wheelchair occupant in side impact, we used a dynamic sled impact test results. The test was carried out total 6 times and impact speed was 13g$\pm$0.43/28km/h$\pm$0.95, By using EURO SID-1 dummy, head performance criteria(HPC), abdominal peak force, etc. were measured. We evaluated wheelchair occupant safety by motion criteria(MC) which was measured by head, trunk and side deformation change of wheelchair and Head & Neck injury criteria(HNI) measured by using head and neck deformation angle and time relation. When we assumed that the maximum injury value in side impact was 100%, the results of motion criteria(MC) of wheelchair occupant were max 80.3, mim 32.3 and average 60.3%, Head & Neck injury criteria(HNI) value were max 118.4, min 14.5 and average 59.7%.

  • PDF

Impact Ionization Characteristics Near the Drain of Silicon MOSFET's at 77 and 300 K Using Monte Carlo Method (몬데 칼로 방법을 이용한 실리콘 MOSFET의 드레인영역에서 77 K와 300 K의 Impact Ionization 특성)

  • Rhee, Jun-Koo;Park, Young-June;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.131-135
    • /
    • 1989
  • Hot electron simulation of silicon using Monte Carlo method was carried out to investigate impact ionization characteristics near the drain of MOSFET's at 77 and 300K. We successfully characterized drift velocity and impact ionization at 77 and 300K employing a simplified energy band structure and phonon scattering mechanisms. Woods' soft energy threshold model was introduced to the Monte Carlo simulation of impact ionization, and good agreement with reported experimental results was resulted by employing threshold energy of 1.7 eV. It is suggested that the choice of the critical angle between specular reflection and diffusive scattering of surface roughness scattering may be important in determining the impact ionization charateristics of Monte Carlo simulation near the drain of MOSFET's.

  • PDF

A Study on Crash Analysis of Vehicle and Guardrail using a LS-DYNA Program (LS-DYNA 프로그램을 이용한 차량과 가드레일의 충돌해석에 관한 연구)

  • Kwon, O-Hyun;Baek, Se-Ryong;Yoon, Jun-Kyu;Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.179-186
    • /
    • 2016
  • A study is to research crash barriers for vehicles that prevent road breakaway of vehicles and protect car passengers and pedestrians as absorbing impulse. Protection performance tests on vehicle passengers were simulated by using a LS-DYNA program. Through repetitive simulation on various speed and angles, passenger protection performance according to different impact condition was contemplated. Variable setting for the simulation was calculated as the mean weight of domestic car sales. By analyzing NASS (National Automotive Sampling System) of NHTSA (National Highway Traffic Safety Administration) of the U.S., the actual speed and collision angle section of accidents were computed. As a result, we confirmed that THIV (Theoretical Head Impact Velocity) and PHD (Post-impact Head Deceleration) are increased according to the impact speed and angle. Also, when the vehicle hit the guardrail post, we could be confirmed that the passenger protection performance greatly decreased.

A Biomechanical Comparison of Cushioning and Motion Control Shoes During Running (달리기시 쿠션형과 모션컨트롤형 런닝화 착용에 따른 생체역학적 비교)

  • Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.1-7
    • /
    • 2005
  • Excessive pronation and impact force during running are related to various running injuries. To prevent these injuries, three type of running shoes are used, such as cushioning, stability, and motion control. Although there were may studies about the effect of midsole hardness on impact force, no study to investigate biomechanical effect of motion control running shoes. The purpose of this study was to determine biomechanical difference between cushioning and motion control shoes during treadmill running. Specifically, plantar and rearfoot motion, impact force and loading rate, and insole pressure distribution were quantified and compared. Twenty male healthy runners experienced at treadmill running participated in this study. When they ran on treadmill at 3.83 m/s. Kinematic data were collected using a Motion Analysis eight video camera system at 240 Hz. Impact force and pressure distribution data under the heel of right foot were collected with a Pedar pressure insole system with 26 sensors at 360 Hz. Mean value of ten consecutive steps was calculated for kinematics and kinetics. A dependent paired t-test was used to compare the running shoes effect (p=0.05). For most kinematics, motion control running shoes reduced the range of rearfoot motion compared to cushioning shoes. Runners wearing motion control shoe showed less eversion angle during standing less inversion angle at heel strike, and slower eversion velocity. For kinetics, cushioning shoes has the effect to reduce impact on foot obviously. Runners wearing cushioning shoes showed less impact force and loading rate, and less peak insole pressure. For both shoes, there was greater load on the medial part of heel compared to lateral part. For pressure distribution, runners with cushioning shoes showed lower, especially on the medial heel.

Effect of new tunnel construction on structural performance of existing tunnel lining

  • Yoo, Chungsik;Cui, Shuaishuai
    • Geomechanics and Engineering
    • /
    • v.22 no.6
    • /
    • pp.497-507
    • /
    • 2020
  • This paper presents the results of a three-dimensional numerical investigation into the effect of new tunnel construction on structural performance of existing tunnel lining. A three-dimensional finite difference model, capable of modelling the tunnel construction process, was adopted to perform a parametric study on the spatial variation of new tunnel location with respect to the existing tunnel with emphasis on the plan crossing angle of the new tunnel with respect to the existing tunnel and the vertical elevation of the new tunnel with respect to the existing one. The results of the analyses were arranged so that the effect of new tunnel construction on the lining member forces and stresses of the existing tunnel can be identified. The results indicate that when a new tunnel underpasses an existing tunnel, the new tunnel construction imposes greater impact on the existing tunnel lining when the two tunnels cross at an acute angle. Also shown are that the critical plan crossing angle of the new tunnel that would impose greater impact on the existing tunnel depends on the relative vertical location of the new tunnel with respect to the existing one, and that the overpassing new tunnel construction scenario is more critical than the underpassing scenario in view of the existing tunnel lining stability. Practical implications of the findings are discussed.

Analysis of Lumbar Spine Load during Golf Swing in Pro. Golfer

  • Park, Sung-Kyu;Cho, Woong;An, Ho-Jung
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.1 no.2
    • /
    • pp.162-168
    • /
    • 2010
  • Low back pain is a common phenomenon among the golfers. In an attempt to understand low back pain, the kinematic changes and golf swing motion analysis has been performed to focus on lumbar spine in pro. golfers. According to the swing pattern, significant variations of the lumbar joint forces and loads has related with muscles activities so the motion analysis of lumbar spine were discussed. The purpose of this study was to analyze motion of lumbar spine and it was to compare joint force during golf swing in pro. golfers. The swing motion of the subjects was tracked using a 3D motion analysis system by Motion Analysis Ltd. and SIMM software. The angle changes of lumbar spine rapidly in vx direction during the top back swing and the finish and in vy direction during the follow through and in vz direction during the down swing and the impact(Subject A). The angle changes of lumbar spine rapidly in vx direction during the top back swing and in vy direction during the down swing, the impact and the follow through and in vz direction during the down swing(Subject B). In conclusion, subject A and B both show sudden angle changes between 1st-3rd lumbar spine and 4th-5th lumbar spine during the stage from address to top back swing which caused by over upper body twisting.

  • PDF