• Title/Summary/Keyword: Immunomodulatory activity

Search Result 303, Processing Time 0.026 seconds

DEU-7 Derived from Ulmus macrocarpa Improved Immune Functions in Cyclophosphamide-treated Mice (면역억제 마우스 모델에서 왕느릅나무 유래 DEU-7의 면역기능 증강)

  • Kang, Kyung-Hwa;Go, Ji Su;Lee, Inhwan;Lee, Sang Ho;Lee, Sung Do;Kim, Deok Won;Lee, Jong-Hwan;Hwang, HyeJin;Hyun, Sook Kyung;KIM, Byoung Woo;Kim, Chul Min;Chung, Kyung Tae
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1156-1163
    • /
    • 2015
  • The present study investigated the immunomodulatory properties of four different medicinal plants in a cyclophosphamide-treated Balb/c mouse model. One of the four plants, Ulmus macrocarpa, showed partial resistance against immune suppression induced by cyclophosphamide. The bark of U. macrocarpa, commonly known as the Chinese elm, has been used as a pharmaceutical material in Korean traditional medicine to treat bacterial inflammation and induce wound healing. In this study, water extract of U. macrocarpa, named DEU-7, was used for its immunomodulating functional activity. DEU-7 increased the weight of the spleen and the number of splenocytes but did not significantly affect the liver, kidney, and thymus in vivo. A splenocyte viability assay confirmed that DEU-7 influenced ex vivo splenocyte survival. DEU-7 also increased the levels of cytokines, such as IL-2 and IL-4, and immunoglobulins, such as IgM, IgG, and IgA. These results indicated that DEU-7 is involved in the activation of T and B lymphocytes. In addition, DEU-7 was able to maintain the production of cytokines, such as TNF-α, IL-12, and IFN-γ, in the condition of cyclophosphamide-induced immune suppression, suggesting that DEU-7 activated innate immune cells, even under immune suppression. We concluded that DEU-7 aids immunological homeostasis, thereby preventing immune suppression, and aids both innate and adaptive immune response by maintaining the levels of various cytokines and immunoglobulins. Consequently, it is worth investigating the potential of DEU-7 as a supplemental source for immune-enhancing agents.

Enhancement of Skin Immune Activation Effect of Collagen Peptides Isolated from Asterias amurensis (불가사리 유래 콜라겐 펩타이드의 피부 면역 증진 효과)

  • Jeong, Hyang-Suk;Kwon, Min-Chul;Han, Jae-Gun;Ha, Ji-Hye;Jin, Ling;Kim, Jin-Chul;Kwak, Hyeong-Geun;Hwang, Bo-Young;Lee, Hyeon-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.522-527
    • /
    • 2008
  • Low molecular peptides were isolated from Asterias amurensis via SDS-PAGE. The peptides were separated via consecutive gel filtration as five fractions (F1-F5) according to molecular weights, based on the results of MALDI-TOF MS analysis. The molecular weight of the most active peptide was estimated as 15,000 daltons. The peptide showed cytotoxicity on normal human fibroblast cells at levels as low as 20% when 1.0 mg/mL of the samples was added. The peptide also exhibited higher levels of nitric oxide production from macrophages than the lipopolysaccaharides. It was determined that prostaglendin $E_2$ production was significantly inhibited, up to 127.8% as compared to the control. The low molecular peptide inhibited hyaluronidase activity as 535.7 ${\mu}g/mL$ of $IC_{50}$. It can be concluded that the relatively low molecular weight peptide, fucoidan, from A. amurensis has excellent cosmetic and immunomodulatory activities, which can be considered as a possible resource of new cosmetic agents for skin immunomodulation.

Anti-inflammatory Effect of Heat-Killed Enterococcus faecalis, EF-2001 (열처리 사균체 엔테로코커스 패칼리스 EF-2001의 항염증 효과)

  • Choi, Moon-Suk;Chang, Sang-Jin;Chae, Yuri;Lee, Myung-Hun;Kim, Wan-Joong;Iwasa, Masahiro;Han, Kwon-Il;Kim, Wan-Jae;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1361-1368
    • /
    • 2018
  • Inflammation is the most common condition in the human body. Tissue damage triggers inflammation, together with vasodilation and increased blood flow at the inflamed site, resulting in edema. Inflammatory responses are also triggered by lipopolysaccharide (LPS), a Toll-like receptor Enterococcus faecalis, a gram-positive organism, has been reported to possess immunomodulatory and preventive activities; however, its use may present risks of sepsis and other systemic infections. Heat-killed Enterococcus faecalis (EF-2001) has been reported to induce antitumor activity, but its effects on inflammation are not known. In the present study, we investigated the effect of EF-2001 on LPS-induced macrophage inflammatory responses. EF-2001 treatment reduced nitric oxide (NO) production, indicating suppression of inflammatory reactions. EF-2001 showed no cytotoxicity in macrophages. Further investigation of the anti-inflammatory mechanism of EF-2001 indicated that EF-2001 reduced the LPS-induced expression of inducible nitric oxide synthase and cyclooxygenase-2. EF-2001 also reduced f the LPS induction of several inflammatory molecules involved in the nuclear factor-${\kappa}B$ ($NF-{\kappa}B$) and mitogen-activated protein kinase pathways, including ERK, JNK, and p38 phosphorylation, in a concentration-dependent manner. Additionally, EF-2001 inhibited Akt phosphorylation and increased the expression of the inhibitory ${\kappa}B$ ($I{\kappa}B$) protein, an inhibitor of $NF-{\kappa}B$. EF-2001 also inhibited the nuclear translocation of p65. These results suggest that EF-2001 has anti-inflammatory properties and may be useful for treating inflammatory diseases.