• Title/Summary/Keyword: Immuno cytochemistry

Search Result 4, Processing Time 0.017 seconds

Extracellular Triacylglycerol Lipases Secreted by New Isolate of Filamentous Fungus

  • Lusta, Konstantin A.;Woo, Sahng-Young;Chung, Il-Kyung;Sul, Ill-Whan;Park, Hee-Sung;Shin, Dong-Ill
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.832-838
    • /
    • 1999
  • Two different types of lipases (lipase I and lipase II) secreted into culture medium by Rhizopus sp. L-I were purified using a hydrophobic chromatography and were partially characterized. Both enzymes were monomeric as revealed by SDS-PAGE and gel filtration. The molecular masses of the enzymes were identified as 45 kDa (lipase I) and 69 kDa (lipase II). The isoelectric points were estimated to be 3.6 and 5.2 for lipase I and lipase II, respectively. pH and temperature activity optima for lipase I were as 7.5 and $50^{\circ}C$, respectively, whereas the corresponding parameters for lipase II were 6.0 and $45^{\circ}C$. The amino terminal sequences of lipase I and lipase II, determined by Edman degradation, were found to be Leu-Val-Met-Ile-Gln-Arg and Leu-Val-Met-Lys-Gln-Arg, respectively. By western blotting analysis, the two lipases were found to have a common antigenic determinant. Immuno-electron cytochemistry conducted with polyclonal anti-lipase I antibody indicated the enzyme located in both the periplasm and the adjacent vesicles of fungal hyphae. Fortunately, the sites on the cell envelope where lipase was exported into the culture medium was also identified.

  • PDF

Distribution of Glutamate Receptors in the Retina of the Greater Horseshoe Bat (Rhinolophus ferrumequinum) (한국관박쥐 망막에서 글루타메이트 수용체의 분포 양상)

  • Kwon, Oh-Ju;Jeon, Chang-Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.3
    • /
    • pp.413-418
    • /
    • 2014
  • Purpose: The objective of this study was analyzing the distribution of the excitatory neurotransmitter glutamate receptor to investigate the function in the retina of the greater horseshoe bat. Methods: After retinal tissues of adult greater horseshoe bat were cut into $40{\mu}m$ vertical sections, standard immuno-cytochemical techniques was applied for analysis. Immunofluorescence images were obtained using the Bio-Rad MRC 1024 laser scanning confocal microscope. Results: AMPA (GluR1-4), Kainate (GluR5-7, KA1-2) and NMDA (1, 2A, 2B) mainly distributed in the inner plexiform layer and outer plexiform layer. KA1 receptors have existed not only plexiform layer but also ganglion cell layer. Conclusions: The greater horseshoe bat has same neuron and neurotransmitter to mammalian retina. These findings suggest that bat has a functional retina for visual analysis.

Isolation and In vitro Culture of Pig Spermatogonial Stem Cell

  • Han, Su Young;Gupta, Mukesh Kumar;Uhm, Sang Jun;Lee, Hoon Taek
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.187-193
    • /
    • 2009
  • The present study identified the favorable conditions for isolation, enrichment and in vitro culture of highly purified, undifferentiated pig spermatogonial stem cell (SSC) lines that proliferate for long periods of time in culture. The colonies displayed morphology similar to miceSSC and were positive for markers of SSC (PGP9.5), proliferating germ cell (PigVASA), pre-meiotic germ cell (DAZL) and pluripotency (OCT4, SSEA-1, NANOG, and SOX2) based on immuno-cytochemistry and RT-PCR. The purity of these colonies was confirmed by negative expression of markers for sertoli cell (GATA4 and SOX9), peritubular myoid cell (${\alpha}$-SMA), differentiating spermatogonial and germ cells (c-KIT). The colonies could be maintained with undifferentiated morphology for more than two months and passaged more than 8 times with doubling time between 6-7 days. Taken together, we conclude that pigSSC could be successfully isolated and cultured in vitro and they possess characteristics similar to miceSSC.

Overview of Immunoelectron Microscopy

  • Park, Chang-Hyun;Kim, Hong Lim;Chang, Byung-Joon;Lee, Sang Hoon;Chang, Byung Soo;Bae, Chun-Sik;Cho, Ik-Hyun;Kim, Dong Heui;Han, Jung-Mi;Na, Ji Eun;Choi, Byung-Jin;Kim, Sang-Sik;Kim, Hyun-Wook;Kim, Jee-Woong;Rhyu, Im Joo;Uhm, Chang-Sub
    • Applied Microscopy
    • /
    • v.48 no.4
    • /
    • pp.87-95
    • /
    • 2018
  • Immunoelectron microscopy using an antigen-antibody reaction in an electron microscope is a very useful tool to identify the components of a tissue in an electron microscope. Many researchers also use immunoelectron microscopy. Nonetheless, immunoelectron microscopy is rarely introduced systematically, and immunoelectron microscopy can be carried out without fully understanding the principles, and cases of poor understanding can often be seen in the vicinity. Therefore, in order to make it easier to understand, we will first introduce the principles of immunoelectron microscopy and describe practical methods.