• 제목/요약/키워드: Immune-enhancing

검색결과 338건 처리시간 0.026초

영지버섯과 표고버섯 원형질 융합체의 미토콘드리아 DNA 검색 (Mitochondrial DNA Analysis in Fusants of Ganoderma lucidum and Lentinus edodes)

  • 최은주;정영자;이영재;김병각;현진원
    • 한국환경성돌연변이발암원학회지
    • /
    • 제22권3호
    • /
    • pp.199-204
    • /
    • 2002
  • It has been known that Ganoderma lucidum and Lentinus edodes have anticancer activity and immune enhancing activity. These two mushrooms were grown in liquid culture and harvested. From these mycelia, DNA was isolated and EtBr-CsCl density gradient ultracentrifugation was performed to purify it further. Then mitochondrial DNA was isolated by bisbenzimide-CsCl density ultracentrifugaton. Mitochondrial DNA of Ganoderma lucidum was digested by restriction enzymes, EcoR I, Hind Ⅲ, and Pst I, then electrophoresed. It showed 12, 22, 4 fragments. Mitochondrial DNA of Lentinus edodes was digested by EcoR I. Electric pattern showed 6 fragments. 4 fragments had appeared by Pst 1 digested mitochondrial DNA. Hind ill couldn't digest mitochondrial DNA of Lentinus edodes. Mitochondrial DNA of fusants was isolated to compare to those of parents. The results showed that fusant P₂S₄has new, recombined mitochondrial DNA. But P₂S₄had the same DNA that Ganoderma lucidum had.

  • PDF

결장암 예방에 대한 유산균의 기능 (The Functions of Lactic Acid Bacteria in Colon Cancer Prevention)

  • 전우민
    • Journal of Dairy Science and Biotechnology
    • /
    • 제29권1호
    • /
    • pp.55-58
    • /
    • 2011
  • Certain lactic acid bacteria have anti-tumor activity, especially colon cancer. The fermented milk products containing that kind of lactic acid bacteria have to be recommended for human health as excellent health functional foods. This paper have been classified by 5 regions on the functions of lactic acid bacteria related to prevention of colon cancer. 1) Enhancing of host's immune response; Production of cytokines. 2) Binding and degradation of potential carcinogens; Binding and degradation of mutagenicity. 3) The changes of intestinal microflora and production of antitumorigenic or antimutagenic compounds; Production of azoxymethane. 4) Alteration of the metabolic activity of intestinal microflora; Decrease of harmful enzymes in intestinal tract. 5) Alteration of physicochemical conditions in the colon; Decrease of pH and bile acids contents.

  • PDF

Metagenomic Analysis of Chicken Gut Microbiota for Improving Metabolism and Health of Chickens - A Review

  • Choi, Ki Young;Lee, Tae Kwon;Sul, Woo Jun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권9호
    • /
    • pp.1217-1225
    • /
    • 2015
  • Chicken is a major food source for humans, hence it is important to understand the mechanisms involved in nutrient absorption in chicken. In the gastrointestinal tract (GIT), the microbiota plays a central role in enhancing nutrient absorption and strengthening the immune system, thereby affecting both growth and health of chicken. There is little information on the diversity and functions of chicken GIT microbiota, its impact on the host, and the interactions between the microbiota and host. Here, we review the recent metagenomic strategies to analyze the chicken GIT microbiota composition and its functions related to improving metabolism and health. We summarize methodology of metagenomics in order to obtain bacterial taxonomy and functional inferences of the GIT microbiota and suggest a set of indicator genes for monitoring and manipulating the microbiota to promote host health in future.

The Past, Present, and Future of Adoptive T Cell Therapy

  • Choi, Dong-Hoon;Kim, Tai-Gyu;Sung, Young-Chul
    • IMMUNE NETWORK
    • /
    • 제12권4호
    • /
    • pp.139-147
    • /
    • 2012
  • Although adoptive T cell therapy (ACT) has become a promising immunotherapeutic regime for cancer treatment, its effectiveness has been hindered by several inherent shortcomings regarding safety and efficacy. During the past few decades, several strategies for enhancing the efficacy of ACT have been developed and introduced in clinic. This review will summarize not only the past approaches but also the latest strategies which have been shown to enhance the anticancer activity of ACT.

Acetaminophen과 Acetaldehyde로 유발된 간세포독성에 대한 애엽 물추출물의 영향 (Effect of Water Extract from Artemisiae Argi Folium on Hepatotoxicity Caused by Acetaminophen and Acetaldehyde)

  • 박완수
    • 동의생리병리학회지
    • /
    • 제22권5호
    • /
    • pp.1210-1214
    • /
    • 2008
  • The purpose of this study is to investigate the effect of water extract from Artemisiae Argi Folium (WAAF) on hepatotoxicity caused by acetaminophen (AAP) and acetaldehyde which are regarded as hepatotoxin. Artemisiae Argi Folium was known to have the antibacterial, immune-enhancing, and anticoagulative properties. In Korean Medicine, Artemisiae Argi Folium is supposed to be related with 'liver meridian' according to traditional medical theory. AAP and acetaldehyde reduce the intracellular production of hydrogen peroxide ($H_2O_2$) and nitric oxide (NO) production of human hepatocyte HepG2. The intracellular production of hydrogen peroxide ($H_2O_2$) was measured by dihydrorhodamine 123 (DHR) assay. NO production was measured with Griess test. WAAF increased the production of $H_2O_2$ and NO reduced by AAP and acetaldehyde in HepG2 cells. Therefore, It could be suggested that WAAF has the hepatoprotective activity against AAP and acetaldehyde.

Inhibitory effect of chitosan oligosaccharides on the growth of tumor cells

  • Kim, Se-Kwon;Nam, Mi-Young;Nam, Kyung-Soo
    • 한국어업기술학회:학술대회논문집
    • /
    • 한국어업기술학회 2000년도 춘계수산관련학회 공동학술대회발표요지집
    • /
    • pp.416-417
    • /
    • 2000
  • Chitin, a poly $\beta$-(1longrightarrow14)-N-acetyl-D-glucosamine, is best known as a cell wall component of fungi and as a skeletal materials of invertebrates. Chitosan is derived from chitin by deacetylation in the presence of alkali. Chitosan has been developed as new physiological materials since it possesses antibacterial activity, hypocholesterolemic activity and antihypertensive action. However, the actions of chitosan in vivo still remain ambiguous as the physiological functional properties because most animal intestines, especially the human gastrointestinal tract, do not possess enzyme such as chitosanase which directly degrade the $\beta$-glucosidic linkage in chitosan, and consequently the unbroken polymers may be poorly absorbed into the human intestine. Therefore, recent studies as chitosan have attracted interest for chitosan oligosaccharides, because the oligosaccharides process not only water-soluble property but also versatile functional properties such as antitumor activity, immune-enhancing effects, enhancement of protective effects against infection with some pathogens in mice and antimicrobial activity (Kingsnorth et al., 1983, Mori et al., 1997). (omitted)

  • PDF

Enhanced Anti-tumor Reactivity of Cytotoxic T Lymphocytes Expressing PD-1 Decoy

  • Jae Hun Shin;Hyung Bae Park;Kyungho Choi
    • IMMUNE NETWORK
    • /
    • 제16권2호
    • /
    • pp.134-139
    • /
    • 2016
  • Programmed death-1 (PD-1) is a strong negative regulator of T lymphocytes in tumor-microenvironment. By engaging PD-1 ligand (PD-L1) on tumor cells, PD-1 on T cell surface inhibits anti-tumor reactivity of tumor-infiltrating T cells. Systemic blockade of PD-1 function using blocking antibodies has shown significant therapeutic efficacy in clinical trials. However, approximately 10 to 15% of treated patients exhibited serious autoimmune responses due to the activation of self-reactive lymphocytes. To achieve selective activation of tumor-specific T cells, we generated T cells expressing a dominant-negative deletion mutant of PD-1 (PD-1 decoy) via retroviral transduction. PD-1 decoy increased IFN-γ secretion of antigen-specific T cells in response to tumor cells expressing the cognate antigen. Adoptive transfer of PD-1 decoy-expressing T cells into tumor-bearing mice potentiated T cell-mediated tumor regression. Thus, T cell-specific blockade of PD-1 could be a useful strategy for enhancing both efficacy and safety of anti-tumor T cell therapy.

Engineered T Cell Receptor for Cancer Immunotherapy

  • So Won Lee;Hyang-Mi Lee
    • Biomolecules & Therapeutics
    • /
    • 제32권4호
    • /
    • pp.424-431
    • /
    • 2024
  • Among the therapeutic strategies in cancer immunotherapy-such as immune-modulating antibodies, cancer vaccines, or adoptive T cell transfer-T cells have been an attractive target due to their cytotoxicity toward tumor cells and the tumor antigen-specific binding of their receptors. Leveraging the unique properties of T cells, chimeric antigen receptor-T cells and T cell receptor (TCR)-T cells were developed through genetic modification of their receptors, enhancing the specificity and effectiveness of T cell therapy. Adoptive cell transfer of chimeric antigen receptor-T cells has been successful for the treatment of hematological malignancies. To expand T cell therapy to solid tumors, T cells are modified to express defined TCR targeting tumor associated antigen, which is called TCR-T therapy. This review discusses anti-tumor T cell therapies, with a focus on engineered TCR-T cell therapy. We outline the characteristics of TCR-T cell therapy and its clinical application to non-hematological malignancies.

홍삼의 분획에 따른 면역활성 비교 (Comparative Study on Immuno-Enhancing Effects of Red Ginseng Fractions)

  • 현선희;김은선;이상민;경종수;이상명;이종원;김미리;홍진태;김영숙
    • 한국식품영양과학회지
    • /
    • 제43권11호
    • /
    • pp.1665-1673
    • /
    • 2014
  • 본 연구에서는 홍삼의 면역력 증진에 기여하는 성분을 체계적으로 구명하기 위하여 홍삼분말을 에탄올, 물로 분획하면서 각 분획의 AFCs 형성능 및 Flow cytometery를 이용하여 비장 T 세포수, B 세포수, macrophage 수, $CD4^+$$CD8^+$ T 세포수를 측정하였다. 6년근 홍삼분말을 100% 에탄올로 추출하여 에탄올 분획과 1차 잔사(R1)를 얻었고, 면역활성이 우수한 1차 잔사(R1)를 물로 추출하여 물분획(W)과 2차 잔사(R2)를 얻었다. 6년근 홍삼분말의 산성 다당체, 진세노사이드 함량은 각각 4.94%, 1.56%이며, 에탄올 분획의 산성 다당체, 진세노사이드 함량은 각각 0.11%, 6.99%, 1차 잔사의 산성 다당체, 진세노사이드 함량은 각각 4.93%, 0.40%였다. 6년근 홍삼분말과 1차 분획에 대한 AFCs 형성능 측정 결과 산성 다당체 함량이 높은 1차 잔사가 가장 우수하였다. 면역활성이 우수한 1차 잔사를 물 추출하여 2차 분획을 얻었으며, 2차 분획의 AFCs 형성능을 측정한 결과 물분획이 가장 우수하였다. 물분획의 산성 다당체, 총 사포닌 함량은 각각 7.46%, 0.61%이며, 다른 분획에 비해 산성 다당체 함량이 가장 높았다. 면역활성이 가장 우수한 물분획을 용량에 따른 비장 세포아형을 분석한 결과 cyclophosphamide 투여에 의해 감소된 비장 총 세포수, T 세포수, B 세포수, macrophage 세포수, $CD4^+$$CD8^+$ T 세포수가 용량 의존적으로 유의성 있게 증가하였다. 이상의 결과로부터 홍삼의 면역 증진을 나타내는 성분은 사포닌보다는 다당체 함량이 높은 비사포닌계가 활성을 나타낼 것으로 제시되었다. 앞으로 단계별로 분획을 제조하여 면역활성 기능 성분으로서 다당체에 대한 구조를 구명하고 구조에 따른 면역활성 연구가 필요할 것으로 생각된다.

Overview of Transforming Growth Factor β Superfamily Involvement in Glioblastoma Initiation and Progression

  • Nana, Andre Wendindonde;Yang, Pei-Ming;Lin, Hung-Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.6813-6823
    • /
    • 2015
  • Glioblastoma, also known as glioblastoma multiforme (GBM), is the most aggressive of human brain tumors and has a stunning progression with a mean survival of one year from the date of diagnosis. High cell proliferation, angiogenesis and/or necrosis are histopathological features of this cancer, which has no efficient curative therapy. This aggressiveness is associated with particular heterogeneity of the tumor featuring multiple genetic and epigenetic alterations, but also with implications of aberrant signaling driven by growth factors. The transforming growth factor ${\beta}$ ($TGF{\beta}$) superfamily is a large group of structurally related proteins including $TGF{\beta}$ subfamily members Nodal, Activin, Lefty, bone morphogenetic proteins (BMPs) and growth and differentiation factor (GDF). It is involved in important biological functions including morphogenesis, embryonic development, adult stem cell differentiation, immune regulation, wound healing and inflammation. This superfamily is also considered to impact on cancer biology including that of GBM, with various effects depending on the member. The $TGF{\beta}$ subfamily, in particular, is overexpressed in some GBM types which exhibit aggressive phenotypes. This subfamily impairs anti-cancer immune responses in several ways, including immune cells inhibition and major histocompatibility (MHC) class I and II abolishment. It promotes GBM angiogenesis by inducing angiogenic factors such as vascular endothelial growth factor (VEGF), plasminogen activator inhibitor (PAI-I) and insulinlike growth factor-binding protein 7 (IGFBP7), contributes to GBM progression by inducing metalloproteinases (MMPs), "pro-neoplastic" integrins (${\alpha}v{\beta}3$, ${\alpha}5{\beta}1$) and GBM initiating cells (GICs) as well as inducing a GBM mesenchymal phenotype. Equally, Nodal promotes GICs, induces cancer metabolic switch and supports GBM cell proliferation, but is negatively regulated by Lefty. Activin promotes GBM cell proliferation while GDF yields immune-escape function. On the other hand, BMPs target GICS and induce differentiation and sensitivity to chemotherapy. This multifaceted involvement of this superfamily in GBM necessitates different strategies in anti-cancer therapy. While suppressing the $TGF{\beta}$ subfamily yields advantageous results, enhancing BMPs production is also beneficial.