• Title/Summary/Keyword: Immune-enhancing

Search Result 338, Processing Time 0.026 seconds

Changes in gut microbiota with mushroom consumption (버섯 섭취와 장내 미생물 균총의 변화)

  • Kim, Eui-Jin;Shin, Hyun-Jae
    • Journal of Mushroom
    • /
    • v.19 no.3
    • /
    • pp.115-125
    • /
    • 2021
  • Mushroom consumption causes changes in the immune system and gut microbiota via the actions of mushroom probiotic components. β-Glucan structure-related substances suppress secretion of inflammatory mediators, and induce macrophage activation, enhancing immunity and immune function. Substances other than directly useful components can be metabolized into short-chain fatty acids by gut microbiota. These short-chain fatty acids can then induce immunity, alleviating various diseases. Substances used to stimulate growth of health-promoting gut bacteria, thereby changing the gut microbiota community are defined to be probiotics. Probiotic altered intestinal microflora can prevent various types of bacterial infection from external sources, and can help to maintain immune system balance, thus preventing diseases. Research into beneficial components of Pleurotus eryngii, Lentinula edodes, Pleurotus ostreatus, Flammulina velutipes, Auricularia auricula-judae, and Agaricus bisporus, which are frequently consumed in Korea, changes in microbiota, changes in short-chain fatty acids, and correlations between consumption and health contribute to our understanding of the effects of dietary mushrooms on disease prevention and mitigation.

Adipose-derived stem cells decolonize skin Staphylococcus aureus by enhancing phagocytic activity of peripheral blood mononuclear cells in the atopic rats

  • Lee, Jaehee;Park, Leejin;Kim, Hyeyoung;Rho, Bong-il;Han, Rafael Taeho;Kim, Sewon;Kim, Hee Jin;Na, Heung Sik;Back, Seung Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.287-295
    • /
    • 2022
  • Staphylococcus aureus (S. aureus) is known to induce apoptosis of host immune cells and impair phagocytic clearance, thereby being pivotal in the pathogenesis of atopic dermatitis (AD). Adipose-derived stem cells (ASCs) exert therapeutic effects against inflammatory and immune diseases. In the present study, we investigated whether systemic administration of ASCs restores the phagocytic activity of peripheral blood mononuclear cells (PBMCs) and decolonizes cutaneous S. aureus under AD conditions. AD was induced by injecting capsaicin into neonatal rat pups. ASCs were extracted from the subcutaneous adipose tissues of naïve rats and administered to AD rats once a week for a month. Systemic administration of ASCs ameliorated AD-like symptoms, such as dermatitis scores, serum IgE, IFN-γ+/IL-4+ cell ratio, and skin colonization by S. aureus in AD rats. Increased FasL mRNA and annexin V+/7-AAD+ cells in the PBMCs obtained from AD rats were drastically reversed when co-cultured with ASCs. In contrast, both PBMCs and CD163+ cells bearing fluorescent zymosan particles significantly increased in AD rats treated with ASCs. Additionally, the administration of ASCs led to an increase in the mRNA levels of antimicrobial peptides, such as cathelicidin and β-defensin, in the skin of AD rats. Our results demonstrate that systemic administration of ASCs led to decolonization of S. aureus by attenuating apoptosis of immune cells in addition to restoring phagocytic activity. This contributes to the improvement of skin conditions in AD rats. Therefore, administration of ASCs may be helpful in the treatment of patients with intractable AD.

A review of the immunomodulatory activities of polysaccharides isolated from Panax species

  • Hu, Yeye;He, Yang;Niu, Zhiqiang;Shen, Ting;Zhang, Ji;Wang, Xinfeng;Hu, Weicheng;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • Panax polysaccharides are biopolymers that are isolated and purified from the roots, stems, leaves, flowers, and fruits of Panax L. plants, which have attracted considerable attention because of their immunomodulatory activities. In this paper, the composition and structural characteristics of purified polysaccharides are reviewed. Moreover, the immunomodulatory activities of polysaccharides are described both in vivo and in vitro. In vitro, Panax polysaccharides exert immunomodulatory functions mainly by activating macrophages, dendritic cells, and the complement system. In vivo, Panax polysaccharides can increase the immune organ indices and stimulate lymphocytes. In addition, this paper also discusses the membrane receptors and various signalling pathways of immune cells. Panax polysaccharides have many beneficial therapeutic effects, including enhancing or activating the immune response, and may be helpful in treating cancer, sepsis, osteoporosis, and other conditions. Panax polysaccharides have the potential for use in the development of novel therapeutic agents or adjuvants with beneficial immunomodulatory properties.

Induction of Autophagy by Rosa acicularis Leaves Extracts in RAW264.7 Cells (인가목(Rosa acicularis Lindl.) 잎 추출물의 대식세포에서 자가포식 유도활성)

  • Jeong Won Choi;Jin Boo Jeong
    • Korean Journal of Plant Resources
    • /
    • v.36 no.4
    • /
    • pp.257-263
    • /
    • 2023
  • Autophagy contributes to enhancing the immune system (innate and adaptive immune system) against foreign pathogens. Autophagy of macrophages is used as a major indicator for developing vaccine adjuvants to increase the adaptive immune response. In this study, water extracts from Rosa acicularis leaves (RAL) increased the production of immunostimulatory mediators and phagocytic activity in RAW264.7 cells. RAL increased p62/SQSTM1 expression. Inhibition of TLR4, JNK, and PI3K/AKT blocked RAL-mediated increase of p62/SQSTM1. RAL activated JNK and PI3K/AKT signaling. RAL-mediated activations of JNK and PI3K/AKT signaling were reversed by TLR4 inhibition. Taken together, it is believed that RAL-mediated autophagy may be dependent on activating via TLR4-dependent activation of JNK and PI3K/AKT signaling in macrophages.

Effect of dietary betaine supplementation on the liver transcriptome profile in broiler chickens under heat stress conditions

  • Deok Yun Kim;Gi Ppeum Han;Chiwoong Lim;Jun-Mo Kim;Dong Yong Kil
    • Animal Bioscience
    • /
    • v.36 no.11
    • /
    • pp.1632-1646
    • /
    • 2023
  • Objective: The objective of the present study was to investigate the effect of dietary betaine (BT) supplementation on the hepatic transcriptome profiles in broiler chickens raised under heat stress (HS) conditions. Methods: A total of 180 (21-d-old) Ross 308 male broiler chicks were allotted to 1 of 3 treatment groups with 6 replicated cages in a completely randomized design. One group was kept under thermoneutral conditions at all times and was fed a basal diet (PC). Other 2 groups were exposed to a cyclic heat stress condition. One of the 2 groups under heat stress conditions was fed the basal diet as a negative control (NC), whereas the other group was fed the basal diet supplemented with 0.2% BT. All chickens were provided with diets and water ad libitum for 21 d. Following the experiment, the liver samples were collected for RNA sequencing analysis. Results: Broiler chickens in NC and BT group had decreased (p<0.05) growth performance. In the transcriptome analysis, the number of differentially expressed genes were identified in the liver by HS conditions and dietary BT supplementation. In the comparison between NC and PC treatments, genes related to energy and nucleic acid metabolism, amino acid metabolism, and immune system were altered by HS, which support the reason why heat-stressed poultry had decreased growth performance. In the comparison between NC and BT treatments, genes related to lipid metabolism, carbohydrate metabolism, and immune system were differently expressed under HS conditions. Conclusion: HS negatively impacts various physiological processes, including DNA replication, metabolism of amino acids, lipids, and carbohydrates, and cell cycle progression in broiler chickens. Dietary BT supplementation, however, offers potential counteractive effects by modulating liver function, facilitating gluconeogenesis, and enhancing immune systems. These findings provide a basis for understanding molecular responses by HS and the possible benefits of dietary BT supplementation in broiler chickens exposed to HS.

Effect of Dietary β-1,3/1,6-glucan Supplementation on Growth Performance, Immune Response and Plasma Prostaglandin E2, Growth Hormone and Ghrelin in Weanling Piglets

  • Wang, Zhong;Guo, Yuming;Yuan, Jianmin;Zhang, Bingkun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.5
    • /
    • pp.707-714
    • /
    • 2008
  • The experiment was conducted to evaluate the effect of ${\beta}$-1,3/1,6-glucan on growth performance, immunity and endocrine responses of weanling piglets. One hundred and eighty weanling piglets (Landrace$\times$Large White, $7.20{\pm}0.25kg$ BW and $28{\pm}2$ d of age) were randomly fed 1 of 5 treatment diets containing dietary ${\beta}$-1,3/1,6-glucan supplemented at 0, 25, 50, 100 and 200 mg/kg for 4 wks. Each treatment was replicated in 6 pens containing 6 pigs per pen. On d 14 and 28, body weight gain, feed consumption and feed efficiency were recorded as measures of growth performance. Peripheral blood lymphocyte proliferation and serum immunoglobulin G (IgG) were measured to study the effect of dietary ${\beta}$-1,3/1,6-glucan supplementation on immune function. Plasma prostaglandin E2 (PGE2), growth hormone (GH) and ghrelin were measured to investigate endocrine response to ${\beta}$-1,3/1,6-glucan supplementation. Our results suggest that average daily gain (ADG) and feed efficiency had a quadratic increase trend with dietary ${\beta}$-1,3/1,6-glucan supplementation from d 14 to 28, whereas it had no significant effect on average daily feed intake (ADFI). The treatment group fed with 50 mg/kg dietary ${\beta}$-1,3/1,6-glucan supplementation showed a numerical increase in ghrelin, a similar change trend with ADG and no significant effect on GH. Lymphocyte proliferation indices, serum IgG and plasma PGE2 concentrations varied linearly with dietary supplementation levels of ${\beta}$-1,3/1,6-glucan on d 14. Higher levels of ${\beta}$-1,3/1,6-glucan may have a transient immuno-enhancing effect on the cellular and humoral immune function of weanling piglets via decreased PGE2. Taking into account both immune response and growth performance, the most suitable dietary supplementation level of ${\beta}$-1,3/1,6-glucan is 50 mg/kg for weanling piglets.

Effects of Cordyceps Militaris Extract on Tumor Immunity

  • Ha, Jae-Won;Yoo, Hwa-Seung;Shin, Jang-Woo;Cho, Jung-Hyo;Lee, Nan-Heon;Yoon, Dam-Hee;Lee, Yeon-Weol;Son, Chang-Gue;Cho, Chong-Kwan
    • The Journal of Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.12-29
    • /
    • 2006
  • Background and Aims : Even though various strategies for cancer treatment have advanced with the remarkable development of genomic information and technology, it is far from giving relief to cancer patients. Recently there is accumulating evidence that the immune system is closely connected to anti-tumor defense mechanisms in a multistage process. This includes tumorigenesis, invasion, growth and metastasis. Cordyceps Militaris, a well-known oriental herbal medicine, is a parasitic fungus that has been used as an immune enhancing agent for a long period of time. However, little is known about the cancer-related immunomodulatory effects and anti-tumor activities. In the present study, we aimed to investigate the effects of Cordyceps Militaris extract (CME) on immune modulating and anti-tumor activity. Materials and Methods : To elucidate the effects of CME on macrophage and natural killer (NK) cell activity, we analyzed nitric oxide (NO) production, NK cytotoxicity and gene expression of cytokines related with macrophages and NK cell activity. Results and Conclusions : CME activated and promoted macrophage production of NO. It also enhanced gene expression of IL-1 and iNOS in RAW 264.7 cells. CME promoted cytotoxicity of NK cells against YAC-1 cells and enhanced NK cell related gene expression such as IL-1, IL-2, IL-12, iNOS, IFN-${\gamma}$ and TNF-${\alpha}$ in mice splenocytes. It also Promoted protein expression of IL-10, IL-12, IFN-${\gamma}$ and TNF-${\alpha}$ in mice splenocytes and inhibited lung tumor metastasis induced by CT-26 cell line compared with the control group. From these results, it could be concluded that CME is an effective herbal drug for modulating the immune system and anti-cancer treatment by promoting macrophage and NK cell activity.

  • PDF

Optimization of Culture Condition for Enhancing the Probiotics Functions (프로바이오틱스의 기능성 향상을 위한 배양법)

  • Chang, Bo Yoon;Han, Ji Hye;Cha, Bum-Suk;Ann, Sung-Ho;Kim, Sung Yeon
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.3
    • /
    • pp.295-301
    • /
    • 2015
  • The functions of probiotics, particularly Lactic acid bacteria, have been studied in a range of human diseases, including cancer, infectious diseases, gastrointestinal disorders, and allergies. Among the many benefits associated with the consumption of probiotics, modulation of immune activity has received the most attention. This study aimed at investigating the improved immune stimulatory and stability of L. plantarum when cultivated on modified basal media supplemented with the Undaria pinnatifida co-cultured with L. plantarum. An in vitro test showed that U. pinnatifida media cultured L. plantarum is strong enough to survive in the gastric juice (gastric and bile acid). Mouse macrophage-derived cell lines RAW 264.7 was used to measured immune stimulating activity of L. plantarum. When U. pinnatifida media cultured by L. plantarum was NO and $TNF-{\alpha}$ production is significantly increased compared to basal media cultured L. plantarum. These results show that U. pinnatifida could be applied for a component for cultivation of L. plantarum. This optimized U. pinnatifida medium can be used the improving of stability and immune function on production of probiotics.

Modulatory Effects of Herbal Medicines Extracts on Cytokine Release in Immune Response of RAW 264.7 and TK-1 (한약재 9종의 추출물이 RAW 264.7과 TK-1 세포의 cytokine 분비에 미치는 영향)

  • Bae, Su-kyoung;Cho, Se-hee;Ahn, Tae-kyu;Kim, Jee-in;Kim, Bong-hyun;Lim, Jae-hwan
    • The Journal of Internal Korean Medicine
    • /
    • v.39 no.6
    • /
    • pp.1244-1255
    • /
    • 2018
  • Objectives: The purpose of this study is to determine the stimulatory effects of herbal medicines extracts on cytokines release of immune response in immune cells, RAW 264.7 and TK-1 cell. Methods: In a total of 18 extracts, 9 water extracts and 9 ethanol extracts, of herbal medicines, the quantities of polyphenolic compounds were measured and anti-oxidation activities were determined by colorimetric assay. The herbal medicine extracts were treated on RAW 264.7 and TK-1, respectively, and then the releasing changes of tumor necrosis factor-${\alpha}$ ($TNF-{\alpha}$), interleukin-6, and interleukin-10 from both immune cells were determined by the enzyme-linked immunosorbent assay. Results: The polyphenol contents were measured to be 1.56~0.64 mg/g of solids in the two types of extracts with 9 kinds of herbal medicines, while antioxidant activities were found to be 95.62~31.46% as compared with ascorbic acid control. In RAW 264.7 cells treated with herbal medicines extracts, the secretion of $TNF-{\alpha}$ increased to 1.31~1.18 fold, and the amounts of IL-6 were 68.4~97.9% compared with the control group treated with LPS alone. In particular, the secretion amount of anti-inflammatory cytokine IL-10 was suppressed by treatment using herbal medicine extracts. In the case of TK-1 cells, $TNF-{\alpha}$ secretion was suppressed according to the concentrations of herbal extract. The released amounts of IL-10 were shown at 10~40 pg/ml, and increased in a dose-dependent manner. Conclusions: Herbal medicines extracts act on macrophages inducing the secretion of inflammatory cytokine, thereby enhancing the activity of innate immunity. When acting on T cells involved in adaptive immunity, the secretion of anti-inflammatory cytokine is increased to induce the inhibition of the innate immune response.

In Vivo Immunological Activity in Fermentation with Black Rice Bran (유색미 미강발효물의 면역활성 효과)

  • Kim, Dong-Ju;Ryu, Su-Noh;Han, Sang-Jun;Kim, Hwa-Young;Kim, Jung-Hak;Hong, Seong-Gil
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.3
    • /
    • pp.273-281
    • /
    • 2011
  • Rice bran is byproducts of the hulling of rice, an important food resource in Korea. Various studies have been reported immune-enhancing effects of rice bran cultured with Lentinus edodes. In particular black rice bran contains anthocyanin, and the effects of antioxidant have been reported. The objective of the this study was to investigate the possible immune-enhancing effects of black rice bran substance extracted from a submerged culture of Lentinus edodes with black rice bran (crude fermentation-polysaccharide, CFP) and products(crude fermentation-polysaccharide-S. cerevisiae CFP-S, crude fermentation-polysaccharide-L. gasseri, CFP-L) which are of secondary fermentation of by using Saccharomyces cerevisiae and Lactobacillus gasseri in the Blab/c male mice. We found that supplementation of CFP, CFP-S and CFP-L enhanced macrophage and splenocyte proliferation compared to the control group(NC) in mice. Also, we measured the concentration of cytokines(IFN-${\gamma}$, TNF-${\alpha}$, IL-6) secreted by activated macrophage and splenocyte. The results of the experiment are that supplementation of CFP and CFP-S increased the macrophage and splenocyte proliferation compared to the control group but supplementation of CFP-L decreased the splenoyte proliferation compared to the control group(without mitogen and treated with LPS). When macrophage and splenocyte were stimulated by CFP and CFP-S supplementation, it was increased IFN-${\gamma}$, TNF-${\alpha}$ and IL-6 concentration compared with the control group. These results suggest that the capacity of CFP and CFP-S seem to act as a potent immune modulator causing augmentation of immune cell activity, and enhance the immue function through regulating cytokine production capacity by activated macrophage and splenocyte in mice.