• 제목/요약/키워드: Immune evasion

검색결과 51건 처리시간 0.019초

Immune Evasion of G-CSF and GM-CSF in Lung Cancer

  • Yeonhee Park;Chaeuk Chung
    • Tuberculosis and Respiratory Diseases
    • /
    • 제87권1호
    • /
    • pp.22-30
    • /
    • 2024
  • Tumor immune evasion is a complex process that involves various mechanisms, such as antigen recognition restriction, immune system suppression, and T cell exhaustion. The tumor microenvironment contains various immune cells involved in immune evasion. Recent studies have demonstrated that granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) induce immune evasion in lung cancer by modulating neutrophils and myeloid-derived suppressor cells. Here we describe the origin and function of G-CSF and GM-CSF, particularly their role in immune evasion in lung cancer. In addition, their effects on programmed death-ligand 1 expression and clinical implications are discussed.

Molecular Perspectives of SARS-CoV-2: Pathology, Immune Evasion, and Therapeutic Interventions

  • Shah, Masaud;Woo, Hyun Goo
    • Molecules and Cells
    • /
    • 제44권6호
    • /
    • pp.408-421
    • /
    • 2021
  • The outbreak of coronavirus disease 2019 (COVID-19) has not only affected human health but also diverted the focus of research and derailed the world economy over the past year. Recently, vaccination against COVID-19 has begun, but further studies on effective therapeutic agents are still needed. The severity of COVID-19 is attributable to several factors such as the dysfunctional host immune response manifested by uncontrolled viral replication, type I interferon suppression, and release of impaired cytokines by the infected resident and recruited cells. Due to the evolving pathophysiology and direct involvement of the host immune system in COVID-19, the use of immune-modulating drugs is still challenging. For the use of immune-modulating drugs in severe COVID-19, it is important to balance the fight between the aggravated immune system and suppression of immune defense against the virus that causes secondary infection. In addition, the interplaying events that occur during virus-host interactions, such as activation of the host immune system, immune evasion mechanism of the virus, and manifestation of different stages of COVID-19, are disjunctive and require thorough streamlining. This review provides an update on the immunotherapeutic interventions implemented to combat COVID-19 along with the understanding of molecular aspects of the immune evasion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which may provide opportunities to develop more effective and promising therapeutics.

Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies

  • Lee, Hye-Ra;Choi, Un Yung;Hwang, Sung-Woo;Kim, Stephanie;Jung, Jae U.
    • Molecules and Cells
    • /
    • 제39권11호
    • /
    • pp.777-782
    • /
    • 2016
  • The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.

Immune Regulatory Function of Cancer-Associated Fibroblasts in Non-small Cell Lung Cancer

  • Hyewon Lee;Mina Hwang;Seonae Jang;Sang-Won Um
    • Tuberculosis and Respiratory Diseases
    • /
    • 제86권4호
    • /
    • pp.304-318
    • /
    • 2023
  • Background: Cancer-associated fibroblasts (CAFs) are key components of the tumor microenvironment and significantly contribute to immune evasion. We investigated the effects of CAFs on the immune function of CD4+ and CD8+ T cells in non-small cell lung cancer (NSCLC). Methods: We isolated CAFs and normal fibroblasts (NFs) from tumors and normal lung tissues of NSCLC patients, respectively. CAFs were co-cultured with activated T cells to evaluate their immune regulatory function. We investigated the effect of CAF conditioned medium (CAF-CM) on the cytotoxicity of T cells. CAFs were also co-cultured with activated peripheral blood mononuclear cells and further incubated with cyclooxygenase-2 (COX2) inhibitors to investigate the potential role of COX2 in immune evasion. Results: CAFs and NFs were isolated from the lung tissues (n=8) and lymph nodes (n=3) of NSCLC patients. Immune suppressive markers, such as COX2 and programmed death-ligand 1 (PD-L1), were increased in CAFs after co-culture with activated T cells. Interestingly, CAFs promoted the expression of programmed death-1 in CD4+ and CD8+ T cells, and strongly inhibited T cell proliferation in allogenic and autologous pairs of CAFs and T cells. CAF-CM decreased the cytotoxicity of T cells. COX2 inhibitors partially restored the proliferation of CD4+ and CD8+ T cells, and downregulated the expression of COX2, prostaglandin E synthase, prostaglandin E2, and PD-L1 in CAFs. Conclusion: CAFs promote immune evasion by suppressing the function of CD4+ and CD8+ T cells via their effects on COX2 and PD-L1 in NSCLC. The immunosuppressive function of CAFs could be alleviated by COX2 inhibitors.

Host Innate Immunity against Hepatitis E Virus and Viral Evasion Mechanisms

  • Kang, Sangmin;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권10호
    • /
    • pp.1727-1735
    • /
    • 2017
  • Hepatitis E virus (HEV) infections cause epidemic or sporadic acute hepatitis, which are mostly self-limiting. However, viral infection in immunocompromised patients and pregnant women may result in serious consequences, such as chronic hepatitis and liver damage, mortality of the latter of which reaches up to 20-30%. Type I interferon (IFN)-induced antiviral immunity is known to be the first-line defense against virus infection. Upon HEV infection in the cell, the virus genome is recognized by pathogen recognition receptors, leading to rapid activation of intracellular signaling cascades. Expression of type I IFN triggers induction of a barrage of IFN-stimulated genes, helping the cells cope with viral infection. Interestingly, some of the HEV-encoded genes seem to be involved in disrupting signaling cascades for antiviral immune responses, and thus crippling cytokine/chemokine production. Antagonistic mechanisms of type I IFN responses by HEV have only recently begun to emerge, and in this review, we summarize known HEV evasion strategies and compare them with those of other hepatitis viruses.

Beyond Viral Interferon Regulatory Factors: Immune Evasion Strategies

  • Myoung, Jinjong;Lee, Shin-Ae;Lee, Hye-Ra
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권12호
    • /
    • pp.1873-1881
    • /
    • 2019
  • The innate immune response serves as a first-line-of-defense mechanism for a host against viral infection. Viruses must therefore subvert this anti-viral response in order to establish an efficient life cycle. In line with this fact, Kaposi's sarcoma-associated herpesvirus (KSHV) encodes numerous genes that function as immunomodulatory proteins to antagonize the host immune system. One such mechanism through which KSHV evades the host immunity is by encoding a viral homolog of cellular interferon (IFN) regulatory factors (IRFs), known as vIRFs. Herein, we summarize recent advances in the study of the immunomodulatory strategies of KSHV vIRFs and their effects on KSHV-associated pathogenesis.

The CD28-B7 Family in Anti-Tumor Immunity: Emerging Concepts in Cancer Immunotherapy

  • Leung, Joanne;Suh, Woong-Kyung
    • IMMUNE NETWORK
    • /
    • 제14권6호
    • /
    • pp.265-276
    • /
    • 2014
  • The interactions between B7 molecules and CD28-family receptors are crucial in the regulation of adaptive cellular immunity. In cancer, the aberrant expression of co-inhibitory B7 molecules has been attributed to reduced anti-tumor immunity and cancer immune evasion, prompting the development of cancer therapeutics that can restore T cell function. Murine tumor models have provided significant support for the targeting of multiple immune checkpoints involving CTLA-4, PD-1, ICOS, B7-H3 and B7-H4 during tumor growth, and clinical studies investigating the therapeutic effects of CTLA-4 and PD-1 blockade have shown exceptionally promising results in patients with advanced melanoma and other cancers. The expression pattern of co-inhibitory B7 ligands in the tumor microenvironment has also been largely correlated with poor patient prognosis, and recent evidence suggests that the presence of several B7 molecules may predict the responsiveness of immunotherapies that rely on pre-existing tumor-associated immune responses. While monotherapies blocking T cell co-inhibition have beneficial effects in reducing tumor burden, combinatorial immunotherapy targeting multiple immune checkpoints involved in various stages of the anti-tumor response has led to the most substantial impact on tumor reduction. In this review, we will examine the contributions of B7- and CD28-family members in the context of cancer development, and discuss the implications of current human findings in cancer immunotherapy.

바이러스 감염에 대한 면역반응 (Immune Responses to Viral Infection)

  • 황응수;박정규;차창용
    • IMMUNE NETWORK
    • /
    • 제4권2호
    • /
    • pp.73-80
    • /
    • 2004
  • Viruses are obligate intracellular parasites which cause infection by invading and replicating within cells. The immune system has mechanisms which can attack the virus in extracellular and intracellular phase of life cycle, and which involve both non-specific and specific effectors. The survival of viruses depends on the survival of their hosts, and therefore the immune system and viruses have evolved together. Immune responses to viral infection may be variable depending on the site of infection, the mechanism of cell-to-cell spread of virus, physiology of the host, host genetic variation, and environmental condition. Viral infection of cells directly stimulates the production of interferons and they induce antiviral state in the surrounding cells. Complement system is also involved in the elimination of viruses and establishes the first line of defence with other non-specific immunity. During the course of viral infection, antibody is most effective at an early stage, especially before the virus enters its target cells. The virus- specific cytotoxic T lymphocytes are the principal effector cells in clearing established viral infections. But many viruses have resistant mechanism to host immune responses in every step of viral infection to cells. Some viruses have immune evasion mechanism and establish latency or persistency indefinitely. Furthermore antibodies to some viruses can enhance the disease by the second infection. Immune responses to viral infection are very different from those to bacterial infection.

Immunotherapeutic Approach for Better Management of Cancer - Role of IL-18

  • Kuppala, Manohar Babu;Syed, Sunayana Begum;Bandaru, Srinivas;Varre, Sreedevi;Akka, Jyothy;Mundulru, Hema Prasad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5353-5361
    • /
    • 2012
  • Interleukin-18 (IL-18) is an immune-stimulatory cytokine with antitumor activity in preclinical models. It plays pivotal roles in linking inflammatory immune responses and tumor progression and is a useful candidate in gene therapy of lymphoma or lymphoid leukemia. A phase I study of recombinant human IL-18 (rhIL-18) in patients with advanced cancer concluded that rhIL-18 can be safely given in biologically active doses to patients with advanced cancer. Some viruses can induce the secretion of IL-18 for immune evasion. The individual cytokine activity might be potentiated or inhibited by combinations of cytokines. Here we focus on combinational effects of cytokines with IL-18 in cancer progression. IL-18 is an important non-invasive marker suspected of contributing to metastasis. Serum IL-18 may a useful biological marker as independent prognostic factor of survival. In this review we cover roles of IL-18 in immune evasion, metastasis and angiogenesis, applications for chemotherapy and prognostic or diagnostic significance.