• Title/Summary/Keyword: Immune checkpoint receptor

Search Result 23, Processing Time 0.026 seconds

Radiotherapy and immune checkpoint blockades: a snapshot in 2016

  • Koo, Taeryool;Kim, In Ah
    • Radiation Oncology Journal
    • /
    • v.34 no.4
    • /
    • pp.250-259
    • /
    • 2016
  • Immune checkpoint blockades including monoclonal antibodies (mAbs) of cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed death-1 (PD-1), and programmed death-ligand 1 (PD-L1) have been emerged as a promising anticancer therapy. Several immune checkpoint blockades have been approved by US Food and Drug Administration (FDA), and have shown notable success in clinical trials for patients with advanced melanoma and non-small cell lung cancer. Radiotherapy is a promising combination partner of immune checkpoint blockades due to its potent pro-immune effect. This review will cover the current issue and the future perspectives for combined with radiotherapy and immune checkpoint blockades based upon the available preclinical and clinical data.

Perspectives on immune checkpoint ligands: expression, regulation, and clinical implications

  • Moon, Jihyun;Oh, Yoo Min;Ha, Sang-Jun
    • BMB Reports
    • /
    • v.54 no.8
    • /
    • pp.403-412
    • /
    • 2021
  • In the tumor microenvironment, immune checkpoint ligands (ICLs) must be expressed in order to trigger the inhibitory signal via immune checkpoint receptors (ICRs). Although ICL expression frequently occurs in a manner intrinsic to tumor cells, extrinsic factors derived from the tumor microenvironment can fine-tune ICL expression by tumor cells or prompt non-tumor cells, including immune cells. Considering the extensive interaction between T cells and other immune cells within the tumor microenvironment, ICL expression on immune cells can be as significant as that of ICLs on tumor cells in promoting antitumor immune responses. Here, we introduce various regulators known to induce or suppress ICL expression in either tumor cells or immune cells, and concise mechanisms relevant to their induction. Finally, we focus on the clinical significance of understanding the mechanisms of ICLs for an optimized immunotherapy for individual cancer patients.

Culture Conditions for Mycelial Growth and Anti-Cancer Properties of Termitomyces

  • Suphachai Tharavecharak;Corina N. D'Alessandro-Gabazza;Masaaki Toda;Taro Yasuma;Taku Tsuyama;Ichiro Kamei;Esteban C. Gabazza
    • Mycobiology
    • /
    • v.51 no.2
    • /
    • pp.94-108
    • /
    • 2023
  • Termitomyces sp. that grow in symbiosis with fungus-farming Termites have medicinal properties. However, they are rare in nature, and their artificial culture is challenging. The expression of AXL receptor tyrosine kinase and immune checkpoint molecules favor the growth of cancer cells. The study evaluated the optimal conditions for the artificial culture of Termitomyces and their inhibitory activity on AXL and immune checkpoint molecules in lung adenocarcinoma and melanoma cell lines. The culture of 45 strains of Termitomyces was compared. Five strains with marked growth rates were selected. Four of the selected strains form a single cluster by sequence analysis. The mycelium of 4 selected strains produces more fungal mass in potato dextrose broth than in a mixed media. The bark was the most appropriate solid substrate for Termitomyces mycelia culture. The mycelium of all five selected strains showed a higher growth rate under normal CO2 conditions. The culture broth, methanol, and ethyl acetate of one selected strain (T-120) inhibited the mRNA relative expression of AXL receptor tyrosine kinase and immune checkpoint molecules in cancer cell lines. Overall, these results suggest the potential usefulness of Termitomyces extracts as a coadjuvant therapy in malignant diseases.

Breakthroughs in the Systemic Treatment of HER2-Positive Advanced/Metastatic Gastric Cancer: From Singlet Chemotherapy to Triple Combination

  • Sun Young Rha;Hyun Cheol Chung
    • Journal of Gastric Cancer
    • /
    • v.23 no.1
    • /
    • pp.224-249
    • /
    • 2023
  • Gastric cancer is heterogeneous in morphology, biology, genomics, and treatment response. Alterations in human epidermal growth factor receptor 2 (HER2) overexpression, microsatellite instability (MSI) status, programmed death-ligand 1 (PD-L1) levels, and fibroblast growth factor receptor 2 (FGFR2) can be used as biomarkers. Since the combination of fluoropyrimidine/platinum plus trastuzumab that was investigated in the ToGA trial was approved as a standard of care in HER2-positive patients in 2010, no other agents showed efficacy in the first- (HELOISE, LOGiC, JACOB trials) and second- (TyTAN, GATSBY, T-ACT trials) line treatments. Despite the success in treating breast cancer, various anti-HER2 agents, including a monoclonal antibody (pertuzumab), an antibody-drug conjugate (ADC; trastuzumab emtansine [T-DM1]), and a small molecule (lapatinib) failed to translate into clinical benefits until the KEYNOTE-811 (first-line) and DESTINY-Gastri01 (≥second-line) trials were conducted. The incorporation of HER2-directed treatment with immune checkpoint inhibitors in the form of a monoclonal antibody or ADC is now approved as a standard treatment. Despite the promising results of new agents (engineered monoclonal antibodies, bi-specific antibodies, fusion proteins, and small molecules) in the early phase of development, the management of HER2-positive gastric cancer requires further optimization to achieve precision medicine with a chemotherapeutic backbone. Treatment resistance is a complex process that can be overcome using a combination of chemotherapy, targeted agents, and immune checkpoint inhibitors, including novel agents. HER2 status must be reassessed in patients undergoing anti-HER2 treatment with disease progression after the first-line treatment. As a general guideline, patients who need systemic treatment should receive chemotherapy plus targeted agents, anti-angiogenic agents, immune checkpoint inhibitors, or their combinations.

Acetate decreases PVR/CD155 expression via PI3K/AKT pathway in cancer cells

  • Tran, Na Ly;Lee, In Kyu;Choi, Jungkyun;Kim, Sang-Heon;Oh, Seung Ja
    • BMB Reports
    • /
    • v.54 no.8
    • /
    • pp.431-436
    • /
    • 2021
  • In recent years, restoring anti-tumor immunity has garnered a growing interest in cancer treatment. As potential therapeutics, immune checkpoint inhibitors have demonstrated benefits in many clinical studies. Although various methods have been applied to suppress immune checkpoints to boost anti-tumor immunity, including the use of immune checkpoint inhibitors, there are still unmet clinical needs to improve the response rate of cancer treatment. Here, we show that acetate can suppress the expression of poliovirus receptor (PVR/CD155), a ligand for immune checkpoint, in colon cancer cells. We demonstrated that acetate treatment could enhance effector responses of CD8+ T cells by decreasing the expression of PVR/CD155 in cancer cells. We also found that acetate could reduce the expression of PVR/CD155 by deactivating the PI3K/AKT pathway. These results demonstrate that acetate-mediated expression of PVR/CD155 in cancer cells might potentiate the anti-tumor immunity in the microenvironment of cancer. Our findings indicate that maintaining particular acetate concentrations could be a complementary strategy in current cancer treatment.

Pembrolizumab-related autoimmune hemolytic anemia in a patient with metastatic lung adenocarcinoma: a case report

  • Baek, Dong Won;Chae, Yee Soo
    • Journal of Yeungnam Medical Science
    • /
    • v.38 no.4
    • /
    • pp.366-370
    • /
    • 2021
  • Immune checkpoint inhibitors (ICIs) have become the main drugs for programmed cell death receptor-1 or ligand-1 expressing non-small cell lung cancer (NSCLC) combined with conventional chemotherapy. ICIs are generally more tolerable than cytotoxic chemotherapies in terms of toxicity, and ICI-related adverse events are mild and manageable. However, these drugs may lead to unexpected severe adverse events such as immune-related hematologic toxicities, which could be life-threatening. Here, a rare case of a pembrolizumab-related adverse event in a patient with NSCLC who showed early-onset hemolytic anemia and recovered by high-dose steroid and a series of plasma exchanges is reported.

Adrenal insufficiency development during chemotherapy plus anti-programmed death receptor-1 monoclonal antibody (tislelizumab) therapy in patients with advanced gastric cancer: two case reports

  • Baek, Jin Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.39 no.1
    • /
    • pp.62-66
    • /
    • 2022
  • Immune checkpoint inhibitor (ICI)-associated adrenal insufficiency is rare but may become a serious adverse event in patients treated with ICIs. The present case report documents two cases of adrenal insufficiency developed during chemotherapy plus tislelizumab (百泽安, Baize'an; BeiGene Ltd.) therapy in patients with advanced gastric cancer. Adrenal insufficiency developed after 6 and 13 cycles of treatment and was well controlled with hydrocortisone. The patients also developed hypothyroidism, which was managed with levothyroxine. Two patients showed a partial response, and one patient out of two achieved a near-complete response, sustaining over 11 months. Increased awareness of ICI-related adrenal insufficiency is crucial for early detection and prompt management of patients treated with ICIs.

Strategies for Manipulating T Cells in Cancer Immunotherapy

  • Lee, Hyang-Mi
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.299-308
    • /
    • 2022
  • T cells are attractive targets for the development of immunotherapy to treat cancer due to their biological features, capacity of cytotoxicity, and antigen-specific binding of receptors. Novel strategies that can modulate T cell functions or receptor reactivity provide effective therapies, including checkpoint inhibitor, bispecific antibody, and adoptive transfer of T cells transduced with tumor antigen-specific receptors. T cell-based therapies have presented successful pre-clinical/clinical outcomes despite their common immune-related adverse effects. Ongoing studies will allow us to advance current T cell therapies and develop innovative personalized T cell therapies. This review summarizes immunotherapeutic approaches with a focus on T cells. Anti-cancer T cell therapies are also discussed regarding their biological perspectives, efficacy, toxicity, challenges, and opportunities.

Hitting the complexity of the TIGIT-CD96-CD112R-CD226 axis for next-generation cancer immunotherapy

  • Jin, Hyung-seung;Park, Yoon
    • BMB Reports
    • /
    • v.54 no.1
    • /
    • pp.2-11
    • /
    • 2021
  • Antibody-based therapeutics targeting the inhibitory receptors PD-1, PD-L1, or CTLA-4 have shown remarkable clinical progress on several cancers. However, most patients do not benefit from these therapies. Thus, many efforts are being made to identify new immune checkpoint receptor-ligand pathways that are alternative targets for cancer immunotherapies. Nectin and nectin-like molecules are widely expressed on several types of tumor cells and play regulatory roles in T- and NK-cell functions. TIGIT, CD226, CD96 and CD112R on lymphoid cells are a group of immunoglobulin superfamily receptors that interact with Nectin and nectin-like molecules with different affinities. These receptors transmit activating or inhibitory signals upon binding their cognate ligands to the immune cells. The integrated signals formed by their complex interactions contribute to regulating immune-cell functions. Several clinical trials are currently evaluating the efficacy of anti-TIGIT and anti-CD112R blockades for treating patients with solid tumors. However, many questions still need to be answered in order to fully understand the dynamics and functions of these receptor networks. This review addresses the rationale behind targeting TIGIT, CD226, CD96, and CD112R to regulate T- and NK-cell functions and discusses their potential application in cancer immunotherapy.

The nature of triple-negative breast cancer classification and antitumoral strategies

  • Kim, Songmi;Kim, Dong Hee;Lee, Wooseok;Lee, Yong-Moon;Choi, Song-Yi;Han, Kyudong
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.35.1-35.7
    • /
    • 2020
  • Identifying the patterns of gene expression in breast cancers is essential to understanding their pathophysiology and developing anticancer drugs. Breast cancer is a heterogeneous disease with different subtypes determined by distinct biological features. Luminal breast cancer is characterized by a relatively high expression of estrogen receptor (ER) and progesterone receptor (PR) genes, which are expressed in breast luminal cells. In ~25% of invasive breast cancers, human epidermal growth factor receptor 2 (HER2) is overexpressed; these cancers are categorized as the HER2 type. Triple-negative breast cancer (TNBC), in which the cancer cells do not express ER/PR or HER2, shows highly aggressive clinical outcomes. TNBC can be further classified into specific subtypes according to genomic mutations and cancer immunogenicity. Herein, we discuss the brief history of TNBC classification and its implications for promising treatments.