• 제목/요약/키워드: Immune Activation Activity

검색결과 331건 처리시간 0.023초

${\alpha}$-Mangostin Reduced ER Stress-mediated Tumor Growth through Autophagy Activation

  • Kim, Sung-Jin;Hong, Eun-Hye;Lee, Bo-Ra;Park, Moon-Ho;Kim, Ji-Won;Pyun, A-Rim;Kim, Yeon-Jeong;Chang, Sun-Young;Chin, Young-Won;Ko, Hyun-Jeong
    • IMMUNE NETWORK
    • /
    • 제12권6호
    • /
    • pp.253-260
    • /
    • 2012
  • ${\alpha}$-Mangostin is a xanthon derivative contained in the fruit hull of mangosteen (Garcinia mangostana L.), and the administration of ${\alpha}$-Mangostin inhibited the growth of transplanted colon cancer, Her/CT26 cells which expressed Her-2/neu as tumor antigen. Although ${\alpha}$-Mangostin was reported to have inhibitory activity against sarco/endoplasmic reticulum $Ca^{2+}$ ATPase like thapsigargin, it showed different activity for autophagy regulation. In the current study, we found that ${\alpha}$-Mangostin induced autophagy activation in mouse intestinal epithelial cells, as GFP-LC3 transgenic mice were orally administered with 20 mg/kg of ${\alpha}$-Mangostin daily for three days. However, the activation of autophagy by ${\alpha}$-Mangostin did not significantly increase OVA-specific T cell proliferation. As we assessed ER stress by using XBP-1 reporter system and phosphorylation of $eIF2{\alpha}$, thapsigargin-induced ER stress was significantly reduced by ${\alpha}$-Mangostin. However, coadministration of thapsigargin with ${\alpha}$-Mangostin completely blocked the antitumor activity of ${\alpha}$-Mangostin, suggesting ER stress with autophagy blockade accelerated tumor growth in mouse colon cancer model. Thus the antitumor activity of ${\alpha}$-Mangostin can be ascribable to the autophagy activation rather than ER stress induction.

Immune-Enhancing Effect and Anti-Obesity Activit of Kadsura japonica Fruits

  • Jin Hee Woo;Na Rae Shin;Ju-Hyeong Yu;So Jeong Park;Jin Boo Jeong
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2022년도 추계학술대회
    • /
    • pp.87-87
    • /
    • 2022
  • Under the COVID-19 pandemic, interest in immune enhancement and anti-obesity is increasing. Thus, in this study, we investigated whether Kadsura japonica fruits (KJF) exhibits immunostimulatory activity and anti-obesity activity. KJF increased the production of immunostimulatory factors and phagocytosis in RAW264.7 cells. Inhibition of TLR2 and TLR4 blocked KJF-mediated production of immunostimulatory factors in RAW264.7 cells. In addition, the inhibition of MAPK and PI3K/AKT signaling pathway reduced KJF-mediated production of immunostimulatory factors, and the activation of MAPK and PI3K/AKT signaling pathway by KJF suppressed the inhibition of TLR2/4. KJF attenuated the lipid accumulation and the protein expression such as CEBPα, PPARγ, perilipin-1, adiponectin, and FABP4 related to the lipid accumulation in 3T3-L1 cells. In addition, KJF inhibited excessive proliferation of 3T3-L1 cells and protein expressions such as β-catenin and cyclin D1 related to cell growth. These findings indicate that KJF may have immunostimulatory activity and anti-obesity activity.

  • PDF

Effect of Nitric Oxide on ADP-ribose Pyrophosphatase Activity

  • Kim, Jong-Hyun
    • IMMUNE NETWORK
    • /
    • 제5권4호
    • /
    • pp.199-204
    • /
    • 2005
  • Background: ADP-ribosyl pyrophosphatases (ADPRase) has been known to catalyze the hydrolysis of ADP-ribose to ribose-5-phosphate and AMP. The role of ADPRase has been suggested to sanitize the cell by removing potentially toxic ADP-ribose. In this study, we examined the effect of nitric oxide on ADPRase activity in macrophages. Methods: ADPRase activity was measured in NO-inducing J774 cells. For in vitro experiments, recombinant human ADPRase was prepared in bacteria. Results: ADPRase activity was increased by the treatment of exogenous NO generating reagent, sodium nitroprusside (SNP), in J774 cells. The increased ADPRase activity was mediated by the post-translational modification, likely to cause cADP-ribosylation via nitrosylation of cysteine residue on the enzyme. The stimulation with endogeneous NO inducers, $TNF-{\alpha}/IFN-{\gamma}$, also increased ADPRase activity through NO synthesis. Futhermore, ADPRase activity may be mediated by the post-translational modification of ADPRase, ADP-ribosylation. Conclusion: These results indicate that NO synthesized by macrophage activation plays a critical role in the increase in ADPRase activity following ADP-ribose metabolism.

Effects of G-Rh2 on mast cell-mediated anaphylaxis via AKT-Nrf2/NF-κB and MAPK-Nrf2/NF-κB pathways

  • Xu, Chang;Li, Liangchang;Wang, Chongyang;Jiang, Jingzhi;Li, Li;Zhu, Lianhua;Jin, Shan;Jin, Zhehu;Lee, Jung Joon;Li, Guanhao;Yan, Guanghai
    • Journal of Ginseng Research
    • /
    • 제46권4호
    • /
    • pp.550-560
    • /
    • 2022
  • Background: The effect of ginsenoside Rh2 (G-Rh2) on mast cell-mediated anaphylaxis remains unclear. Herein, we investigated the effects of G-Rh2 on OVA-induced asthmatic mice and on mast cell-mediated anaphylaxis. Methods: Asthma model was established for evaluating airway changes and ear allergy. RPMCs and RBL-2H3 were used for in vitro experiments. Calcium uptake, histamine release and degranulation were detected. ELISA and Western blot measured cytokine and protein levels, respectively. Results: G-Rh2 inhibited OVA-induced airway remodeling, the production of TNF-α, IL-4, IL-8, IL-1β and the degranulation of mast cells of asthmatic mice. G-Rh2 inhibited the activation of Syk and Lyn in lung tissue of OVA-induced asthmatic mice. G-Rh2 inhibited serum IgE production in OVA induced asthmatic mice. Furthermore, G-Rh2 reduced the ear allergy in IgE-sensitized mice. G-Rh2 decreased the ear thickness. In vitro experiments G-Rh2 significantly reduced calcium uptake and inhibited histamine release and degranulation in RPMCs. In addition, G-Rh2 reduced the production of IL-1β, TNF-α, IL-8, and IL-4 in IgE-sensitized RBL-2H3 cells. Interestingly, G-Rh2 was involved in the FcεRI pathway activation of mast cells and the transduction of the Lyn/Syk signaling pathway. G-Rh2 inhibited PI3K activity in a dose-dependent manner. By blocking the antigen-induced phosphorylation of Lyn, Syk, LAT, PLCγ2, PI3K ERK1/2 and Raf-1 expression, G-Rh2 inhibited the NF-κB, AKT-Nrf2, and p38MAPK-Nrf2 pathways. However, G-Rh2 up-regulated Keap-1 expression. Meanwhile, G-Rh2 reduced the levels of p-AKT, p38MAPK and Nrf2 in RBL-2H3 sensitized IgE cells and inhibited NF-κB signaling pathway activation by activating the AKT-Nrf2 and p38MAPK-Nrf2 pathways. Conclusion: G-Rh2 inhibits mast cell-induced allergic inflammation, which might be mediated by the AKT-Nrf2/NF-kB and p38MAPK-Nrf2/NF-κB signaling pathways.

Dendritic Cell Activation by Glucan Isolated from Umbilicaria Esculenta

  • Kim, Hyung-Sook;Kim, Jee-Youn;Lee, Hong-Kyung;Kim, Moo-Sung;Lee, Sang-Rin;Kang, Jong-Soon;Kim, Hwan-Mook;Lee, Kyung-Ae;Hong, Jin-Tae;Kim, Young-Soo;Han, Sang-Bae
    • IMMUNE NETWORK
    • /
    • 제10권6호
    • /
    • pp.188-197
    • /
    • 2010
  • Background: Lichen-derived glucans have been known to stimulate the functions of immune cells. However, immunostimulatory activity of glucan obtained from edible lichen, Umbilicaria esculenta, has not been reported. Thus we evaluated the phenotype and functional maturation of dendritic cells (DCs) following treatment of extracted glucan (PUE). Methods: The phenotypic and functional maturation of PUE-treated DCs was assessed by flow cytometric analysis and cytokine production, respectively. PUE-treated DCs was also used for mixed leukocyte reaction to evaluate T cell-priming capacity. Finally we detected the activation of MAPK and NF-${\kappa}B$ by immunoblot. Results: Phenotypic maturation of DCs was shown by the elevated expressions of CD40, CD80, CD86, and MHC class I/II molecules. Functional activation of DCs was proved by increased cytokine production of IL-12, IL-$1{\beta}$, TNF-${\alpha}$, and IFN-${\alpha}/{\beta}$, decreased endocytosis, and enhanced proliferation of allogenic T cells. Polymyxin B, specific inhibitor of lipopolysaccharide (LPS), did not affect PUE activity, which suggested that PUE was free of LPS contamination. As a mechanism of action, PUE increased phosphorylation of ERK, JNK, and p38 MAPKs, and enhanced nuclear translocation of NF-${\kappa}B$ p50/p65 in DCs. Conclusion: These results indicate that PUE induced DC maturation via MAPK and NF-${\kappa}B$ signaling pathways.

갈근탕(葛根湯)이 면역조절작용에 미치는 영향 (Effect of Gal-Geun-Tang on Antigen-Specific Immune Response)

  • 조대연;윤용갑;정명;이은혜;복영옥;정창옥;임규상
    • 한방안이비인후피부과학회지
    • /
    • 제29권3호
    • /
    • pp.134-149
    • /
    • 2016
  • Objectives : Gal-Geun-Tang (GT) has been described from SANGHAN in Korean traditional medicine and known to act against cold, fever, hypertension, and nasal catarrh. However, little has yet been learned about the effect of GT on immune function. In the current study, in vitro and in vivo immunomodulatory activity of GT (water extract) was investigated.Methods : Water extract of GT induced in vitro proliferation of spleen cells and significantly increased their proliferative responses during anti-CD3 activation. Using purified splenic T and B cells, it was revealed that GT has a mitogenic activity to B cells and promotes their proliferation induced by lipopolysaccharide, whereas T cell proliferation was not triggered and GT was rather inhibitory to T cell activation caused by anti-CD3 antibody. In the presence of antigen presenting cells (APC), GT addition resulted in a significant increase of IFNγ and IL-4, but not IL-2, production. However, addition of high concentration (1,000㎍/㎖) of GT led to a marked reduction in T cell cytokine production and under such condition, GT facilitated apoptosis of T cells when examined by flow cytometry with propidium iodide staining.Results : In vivo immunomdulation of GT was also investigated using a mouse model. Following keyhole limpet hemocyanin (KLH) immunization, GT (1 ㎎/day) was orally administered for 9 days. Cell numbers in thymus, spleen and peripheral blood were not altered by GT administration, indicating that such dose is not immunotoxic. Cell numbers in draining lymph nodes (LN) and ex vivo Ag-specific proliferation of LN cells were significantly elevated by GT administration. However, any preferential stimulation of T or B and CD4+ or CD8+ T cell subpopulations was not observed in a flow cytometric analysis of LN cells. This result shows that GT does not promote in vivo B cell proliferation while GT enhances Ag-specific proliferation of LN cells, unlike what was observed in vitro.Conclusions : For a further understanding of in vivo immunomodulatory activity of GT, ex vivo cytokine production of LN cells obtained from KLH-immunized mice was evaluated. Ag-specific IFNγ production was significantly higher in GT-treated mice when compared to PBS-treated control mice. In contrast, IL-4 production in GT-treated group was comparable to control group unlike to in vitro data. In addition, GT administration did not result in any significant differences in serum levels of Ig (IgM, IgG1 and IgG2a) between GT-treated and control groups. Taken together, these data strongly support that GT promotes immune response, more profoundly type 1 helper T cell (Th1) activity and GT may be applicable for treatment of intracellular parasite infection such as viral diseases.

Allithiamine Exerts Therapeutic Effects on Sepsis by Modulating Metabolic Flux during Dendritic Cell Activation

  • Choi, Eun Jung;Jeon, Chang Hyun;Park, Dong Ho;Kwon, Tae-Hwan
    • Molecules and Cells
    • /
    • 제43권11호
    • /
    • pp.964-973
    • /
    • 2020
  • Recent studies have highlighted that early enhancement of the glycolytic pathway is a mode of maintaining the proinflammatory status of immune cells. Thiamine, a wellknown co-activator of pyruvate dehydrogenase complex, a gatekeeping enzyme, shifts energy utilization of glucose from glycolysis to oxidative phosphorylation. Thus, we hypothesized that thiamine may modulate inflammation by alleviating metabolic shifts during immune cell activation. First, using allithiamine, which showed the most potent anti-inflammatory capacity among thiamine derivatives, we confirmed the inhibitory effects of allithiamine on the lipopolysaccharide (LPS)-induced pro-inflammatory cytokine production and maturation process in dendritic cells. We applied the LPS-induced sepsis model to examine whether allithiamine has a protective role in hyper-inflammatory status. We observed that allithiamine attenuated tissue damage and organ dysfunction during endotoxemia, even when the treatment was given after the early cytokine release. We assessed the changes in glucose metabolites during LPS-induced dendritic cell activation and found that allithiamine significantly inhibited glucose-driven citrate accumulation. We then examined the clinical implication of regulating metabolites during sepsis by performing a tail bleeding assay upon allithiamine treatment, which expands its capacity to hamper the coagulation process. Finally, we confirmed that the role of allithiamine in metabolic regulation is critical in exerting anti-inflammatory action by demonstrating its inhibitory effect upon mitochondrial citrate transporter activity. In conclusion, thiamine could be used as an alternative approach for controlling the immune response in patients with sepsis.

$HgCl_2$에 의한 다클론성 활성화에 의해 나타나는 생쥐의 면역반응 변화에 미치는 파치균 다당류의 영향 (Effects of the Polysaccharides from Irpex lacteus Fr. on some Characteristic Immune Responses in the Polyclonal Activation Induced with Mercuric Chloride in CBA Female Mice)

  • 문창규;목명수;양경미;전선덕;김진형;김강석;최청하;황지원
    • Biomolecules & Therapeutics
    • /
    • 제2권4호
    • /
    • pp.376-382
    • /
    • 1994
  • Repeated injections of low-doses of mercuric chloride in rats or mice induce polyclonal activation which includes the induction of anti-glomerular basement membrane (GBM) antibodies and circulating immune complex and it results in nephritis. Because this disease is autoimmune mediated disease resulted from immune dysfunction, immunomodulators are used to control the symptoms or to cure the disease. Irpex lacteus Fr. is a kind of new medicinal fungus. The polysaccharide fraction extracted from submerged fermentation of Irpex lacteus Fr. decreased the serum agglutinin, serolysin and IgM plaque forming cells in normal mice. The hitherto obtained clinical results suggested that it significantly improved the oligourea, edema, and hypertension in patients who have nephritis. To elucidate the action-mechanisms of Irpex lacteus Fr., we established the experimental model of HgCl$_2$induced polyclonal activation by intraperitoneal administrations of HgCl$_2$to mice. To assess the immunomodulating effect of Irpex lacteus fraction, we Investigated its effects on the mitogen induced proliferation and IgM PFC counts of splenic lymphocytes in mice during the treatment of HgCl$_2$. The Irpex lacteus polysaccharide reduced the abnormally increased mitogen induced Iymphocyte proliferation and IgM PFCs to almost normal levels. And the Irpex lacteus polysaccharides prevented the increasement of serum immunoglobulin level induced by HgCl$_2$. These data suggested that the Irpex lacteus polysaccharides might have the immunomodulating activity to prevent and /or improve the HgCl$_2$ induced autoimmune disease.

  • PDF

생쥐의 자연살해세포에 미치는 인삼 분획물들의 영향 (The Effect of Ginseng Saponin Fractions on NK Activity in Mice)

  • 김미나;정노팔
    • Journal of Ginseng Research
    • /
    • 제13권2호
    • /
    • pp.223-228
    • /
    • 1989
  • Natural killer (NK) cells are a heteroguneous subpopulation of lymphocytes that spontaneously exhibit cytotoxic activity against various virus-Infected and neoplastic target cells without prior exposure to a specific antigen. It was thought that NK calls play an important role in immunosurvrillanre against viral agents and tumors, and in prevention of metastasis. Recently, several reports have indicated evidence that ginseng extracts show a significant stimulatory effect on the humoral and cellular immune responses. This evidence gives support to the suggestion that the anticarcinogenic effect of ginseng may be due to the effect of ginseng on the immunological system. Treatment with total, diol, and triol saponin resulted in an increase in NK cytotoxic activity, but no enhancement of the lytic activity due to the natural killer cytotoxic factor (NKCF). Therefore, these results suggest that the augmentation of NK activity by ginseng saponin fractions may not be due to the activation of NKCF lytic activity.

  • PDF

5-aminoimidazole-4-carboxamide Riboside Induces Apoptosis Through AMP-activated Protein Kinase-independent and NADPH Oxidase-dependent Pathways

  • Wi, Sae Mi;Lee, Ki-Young
    • IMMUNE NETWORK
    • /
    • 제14권5호
    • /
    • pp.241-248
    • /
    • 2014
  • It is debatable whether AMP-activated protein kinase (AMPK) activation is involved in anti-apoptotic or pro-apoptotic signaling. AICAR treatment increases AMPK-${\alpha}1$ phosphorylation, decreases intracellular reactive oxygen species (ROS) levels, and significantly increases Annexin V-positive cells, DNA laddering, and caspase activity in human myeloid cell. AMPK activation is therefore implicated in apoptosis. However, AMPK-${\alpha}1$-knockdown THP-1 cells are more sensitive to apoptosis than control THP-1 cells are, suggesting that the apoptosis is AMPK-independent. Low doses of AICAR induce cell proliferation, whereas high doses of AICAR suppress cell proliferation. Moreover, these effects are significantly correlated with the downregulation of intracellular ROS, strongly suggesting that AICAR-induced apoptosis is critically associated with the inhibition of NADPH oxidase by AICAR. Collectively, our results demonstrate that in AICAR-induced apoptosis, intracellular ROS levels are far more relevant than AMPK activation.