DOI QR코드

DOI QR Code

5-aminoimidazole-4-carboxamide Riboside Induces Apoptosis Through AMP-activated Protein Kinase-independent and NADPH Oxidase-dependent Pathways

  • Wi, Sae Mi (Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine) ;
  • Lee, Ki-Young (Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine)
  • Received : 2014.08.30
  • Accepted : 2014.09.22
  • Published : 2014.10.31

Abstract

It is debatable whether AMP-activated protein kinase (AMPK) activation is involved in anti-apoptotic or pro-apoptotic signaling. AICAR treatment increases AMPK-${\alpha}1$ phosphorylation, decreases intracellular reactive oxygen species (ROS) levels, and significantly increases Annexin V-positive cells, DNA laddering, and caspase activity in human myeloid cell. AMPK activation is therefore implicated in apoptosis. However, AMPK-${\alpha}1$-knockdown THP-1 cells are more sensitive to apoptosis than control THP-1 cells are, suggesting that the apoptosis is AMPK-independent. Low doses of AICAR induce cell proliferation, whereas high doses of AICAR suppress cell proliferation. Moreover, these effects are significantly correlated with the downregulation of intracellular ROS, strongly suggesting that AICAR-induced apoptosis is critically associated with the inhibition of NADPH oxidase by AICAR. Collectively, our results demonstrate that in AICAR-induced apoptosis, intracellular ROS levels are far more relevant than AMPK activation.

Keywords

References

  1. Hardie, D. G., D. Carling, and M. Carlson. 1998. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 67: 821-855. https://doi.org/10.1146/annurev.biochem.67.1.821
  2. Kemp, B. E., K. I. Mitchelhill, D. Stapleton, B. J. Michell, Z. P. Chen, and L. A. Witters. 1999. Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem. Sci. 24: 22-25. https://doi.org/10.1016/S0968-0004(98)01340-1
  3. Hardie, D. G., and D. Carling. 1997. The AMP-activated protein kinase-fuel gauge of the mammalian cell? Eur. J. Biochem. 246: 259-273. https://doi.org/10.1111/j.1432-1033.1997.00259.x
  4. Corton, J. M., J. G. Gillespie, S. A. Hawley, and D. G. Hardie. 1995. 5-Aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur. J. Biochem. 229: 558-565. https://doi.org/10.1111/j.1432-1033.1995.tb20498.x
  5. Garcia-Gil, M., R. Pesi, S. Perna, S. Allegrini, M. Giannecchini, M. Camici, and M. G. Tozzi. 2003. 5'-Aminoimidazole-4-carboxamide riboside induces apoptosis in human neuroblastoma cells. Neuroscience 117: 811-820. https://doi.org/10.1016/S0306-4522(02)00836-9
  6. Thomas, C. B., J. C. Meade, and E. W. Holmes. 1981. Aminoimidazole carboxamide ribonucleoside toxicity: a model for study of pyrimidine starvation. J. Cell. Physiol. 107: 335-344. https://doi.org/10.1002/jcp.1041070305
  7. Sabina, R. L, D. Patterson, and E. W. Holmes. 1985. 5-Amino-4-imidazolecarboxamide riboside (Zriboside) metabolism in eukaryotic cells. J. Biol. Chem. 260: 6107-6114.
  8. Swain, J. L., J. J. Hines, R. L. Sabina, and E. W. Holmes. 1982. Accelerated repletion of ATP and GTP pools in postischemic canine myocardium using a precursor of purine de novo synthesis. Circ. Res. 51: 102-105. https://doi.org/10.1161/01.RES.51.1.102
  9. Swain, J. L., J. J. Hines, R. L. Sabina, O. L. Harbury, and E. W. Holmes. 1984. Disruption of the purine nucleotide cycle by inhibition of adenylosuccinate lyase produces skeletal muscle dysfunction. J. Clin. Invest. 74: 1422-1427. https://doi.org/10.1172/JCI111553
  10. Nath, N., S. Giri, R. Prasad, M. L. Salem, A. K. Singh, and I. Singh. 2005. 5-Aminoimidazole-4-carboxamide ribonucleoside: a novel immunomodulator with therapeutic efficacy in experimental autoimmune encephalomyelitis. J. Immunol. 175: 566-574. https://doi.org/10.4049/jimmunol.175.1.566
  11. Alba, G., R. El Bekay, M. Alvarez-Maqueda, P. Chacon, A. Vega, J. Monteseirin, C. Santa Maria, E. Pintado, F. J. Bedoya, R. Bartrons, and F. Sobrino. 2004. Stimulators of AMP-activated protein kinase inhibit the respiratory burst in human neutrophils. FEBS Lett. 573: 219-225. https://doi.org/10.1016/j.febslet.2004.07.077
  12. Stone, J. R., and S. Yang. 2006. Hydrogen peroxide: a signaling messenger. Antioxid. Redox. Signal. 8: 243-270. https://doi.org/10.1089/ars.2006.8.243
  13. Immenschuh, S., and E. Baumgart-Vogt. 2005. Peroxiredoxins, oxidative stress, and cell proliferation. Antioxid. Redox. Signal. 7: 768-777. https://doi.org/10.1089/ars.2005.7.768
  14. Gechev, T. S., and J. Hille. 2005. Hydrogen peroxide as a signal controlling plant programmed cell death. J. Cell Biol. 168: 17-20. https://doi.org/10.1083/jcb.200409170
  15. Saito, Y., K. Nishio, Y. Ogawa, J. Kimata, T. Kinumi, Y. Yoshida, N. Noguchi, and E. Niki. 2006. Turning point in apoptosis/necrosis induced by hydrogen peroxide. Free Radic. Res. 40: 619-630. https://doi.org/10.1080/10715760600632552
  16. Rhee, S. G., Y. S. Bae, S. R. Lee, and J. Kwon. 2000. Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci. STKE. 53: PE1.
  17. Lambeth, J. D. 2004. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4: 181-189. https://doi.org/10.1038/nri1312
  18. Davies, K. J. 1999. The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 48: 41-47. https://doi.org/10.1080/713803463
  19. Hampton, M. B., and S. Orrenius. 1997. Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett. 414: 552-556. https://doi.org/10.1016/S0014-5793(97)01068-5
  20. Kefas, B. A., Y. Cai, Z. Ling, H. Heimberg, L. Hue, D. Pipeleers, and M. Van de Casteele. 2003. AMP-activated protein kinase can induce apoptosis of insulin-producing MIN6 cells through stimulation of c-Jun-N-terminal kinase. J. Mol. Endocrinol. 30: 151-161. https://doi.org/10.1677/jme.0.0300151
  21. Meisse, D., M. Van de Casteele, C. Beauloye, I. Hainault, B. A. Kefas, M. H. Rider, F. Foufelle, and L. Hue. 2002. Sustained activation of AMP-activated protein kinase induces c-Jun N-terminal kinase activation and apoptosis in liver cells. FEBS Lett. 526: 38-42. https://doi.org/10.1016/S0014-5793(02)03110-1
  22. Busch, C., C. Jacob, A. Anwar, T. Burkholz, L. Aicha Ba, C. Cerella, M. Diederich, W. Brandt, L. Wessjohann, and M. Montenarh. 2010. Diallylpolysulfides induce growth arrest and apoptosis. Int. J. Oncol. 36: 743-749.
  23. Li, N., K. Ragheb, G. Lawler, J. Sturgis, B. Rajwa, J. A. Melendez, and J. P. Robinson. 2003. DPI induces mitochondrial superoxide-mediated apoptosis. Free Radic. Biol. Med. 34: 465-477. https://doi.org/10.1016/S0891-5849(02)01325-4
  24. Yasmeen, A., M. C. Beauchamp, E. Piura, E. Segal, M. Pollak, and W. H. Gotlieb. 2011. Induction of apoptosis by metformin in epithelial ovarian cancer: involvement of the Bcl-2 family proteins. Gynecol. Oncol. 121: 492-498. https://doi.org/10.1016/j.ygyno.2011.02.021
  25. Liu, C., B. Liang, Q. Wang, J. Wu, and M. H. Zou. 2010. Activation of AMP-activated protein kinase alpha1 alleviates endothelial cell apoptosis by increasing the expression of anti-apoptotic proteins Bcl-2 and survivin. J. Biol. Chem. 285: 15346-15355. https://doi.org/10.1074/jbc.M110.102491
  26. Du, J. H., N. Xu, Y. Song, M. Xu, Z. Z. Lu, C. Han, and Y. Y. Zhang. 2005. AICAR stimulates IL-6 production via p38 MAPK in cardiac fibroblasts in adult mice: a possible role for AMPK. Biochem. Biophys. Res. Commun. 337: 1139-1144. https://doi.org/10.1016/j.bbrc.2005.09.174

Cited by

  1. Anti-Proliferative and Pro-Apoptotic Activities of 4-Methyl-2,6-bis(1-phenylethyl)phenol in Cancer Cells vol.24, pp.4, 2014, https://doi.org/10.4062/biomolther.2015.166