• Title/Summary/Keyword: Immobilization method

Search Result 315, Processing Time 0.037 seconds

Development of Cell Entrapment Technology for the Improvement of Bifidobacterium Viability (Bifidobacterium의 생존력 증대를 위한 세포포집기술개발)

  • Park, Hui-Gyeong;Bae, Gi-Seong;Heo, Tae-Ryeon
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.389-395
    • /
    • 1999
  • Bifidobcterium spp. can provide human being with several beneficial physiological. Therefor, there has been a considerable interest in products Bifidobcterium spp. dietary supplements or as starter cultures for probiotic products that may assint in the improvement of health on the human. But indusrial applications have been limited because Bifidobcterium spp. are sensitive to acidic pH due to organic acid produced by themselves and various conditions. The objective of this study was to establish new method for improvement of Bifidobcterium viability by entrapment im calcium alginate beads. We have a plan to select the most suitable polymer through the comparison with acid tolerance oxygen tolerance and theological properties of polymer. Increase of the viable number of Bifidobcterium induced increasing acid tolerance and oxygen tolernce trough the development of entrapment technique. The 4%, 3030mm diameter) sodium alginate beads led to the best survivability under acid condition. Especially, addition of 6% mannitol, 6% glycerol or 6% sorbitol to the sodium alginate helped a beneficial effect on viability against acid, bile salt, hydrogen peroxide and cold strage. The number of viability of entrapeede cells by retreatment was 96 fold higher than non-entrapeed cells after 5 hours of storage under pH 3 acidic condition. These experimental data clearly demonstrate that a whole cell immobilization by entrapment in calcium alginate beads is an important survival mechanism enable to withstand environmental stresses as the acidic condition, hydrogen peroxide toxicity and frozen state.

  • PDF

Heave Metal Toxicity Test in Moina macrocopa with Glucose-6-phosphate Dehydrogenase Activity (Glucose-6-phosphate dehydrogenase를 이용한 Moina macrocopa의 중금속 독성 검정)

  • Park Yong-seok;Lee Sang-Goo;Lee Seung-Jin;Moon Sung-Kyung;Choi Eun-Joo;Rhie Ki-tae
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.4
    • /
    • pp.305-310
    • /
    • 2003
  • A rapid, inexpensive enzymatic method is proposed for indirect water quality testing in terms of heavy metal toxicity. The activity of glucose-6-phosphate dehydrogenase was applied for heavy metal toxicity test as an effective criterion in water quality. The toxicity of Pb (lead) and Cd (cadmium) for water flea, Moina macrocopa, were evaluated for 2-8 days with variables of mobilization ability. And the reproduction impairment of Moina macrocopa were investigated as the parameter of chronic toxicity test for Pb and Cd. As a result, the EC$_{50}$ for immobilization of Moina macrocopa were Pb and Cd were 1.6749 and 0.4683, respectively. The values of reproductive impairment to Moina macrocopa for Pb and Cd were 9.5938 and 8.3264 in EC$_{50}$ A significant alteration of G6PDH (Glucose-6-phosphate dehydrogenase) activity of Moina macrocopa was observed when Cd and Pb were treated in media. The results obtained indicate that G6PDH activity of Moina macrocopa can be used as an indicative parameter in aquatic toxicity tests for heavy metals.als.

CARE OF RECURRENT TEMPOROMANDIBULAR JOINT DISLOCATION IN CEREBROVASCULAR ACCIDENT PATIENT : REPORT OF A CASE (뇌졸중 환자에서 재발성 턱관절 탈구의 관리 : 증례보고)

  • Oh, Ji-Hyeon;Yoo, Jae-Ha;Kim, Jong-Bae
    • The Journal of Korea Assosiation for Disability and Oral Health
    • /
    • v.11 no.2
    • /
    • pp.62-66
    • /
    • 2015
  • Temporomandibular joint dislocation causes considerable pain, discomfort, and swelling. The anatomic construction of the articular fossa and the eminentia articularis may predispose to dislocation, and weakness of the connective tissue forming the capsule is believed to be a predisposing factor. The capsule may be stretched and, more rarely, torn. Dislocation may be unilateral or bilateral and may occur spontaneously after stretching of the mouth to its extreme open position, such as during a yawn or during a routine dental operation. Manual reduction with the patient under muscle-relaxing condition or anesthesia is recommended method. After the reduction of an acute dislocation, immobilization of the jaw is recommended to allow the stretched and sometimes torn capsule to heal, thus preventing recurrence. A Barton's bandage may be applied for 2 to 3 weeks to prevent the patient from opening the jaw too wide. But, it results in recurrent dislocation in the neurologically disabled patient, because of loose intermaxillary fixation. This is a case report about management of recurrent temporomandibular joint dislocation by multiple loop wirings and intermaxillary elastics in cerebrovascular accident patient.

Transesterification Using the Cross-Linked Enzyme Aggregate of Photobacterium lipolyticum Lipase M37

  • Han, Jin-Yee;Kim, Hyung-Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.11
    • /
    • pp.1159-1165
    • /
    • 2011
  • Biodiesel is methyl and ethyl esters of long-chain fatty acids produced from vegetable oils or animal fats. Lipase enzymes have occasionally been used for the production of this biofuel. Recently, biodiesel production using immobilized lipase has received increased attention. Through enhanced stability and reusability, immobilized lipase can contribute to the reduction of the costs inherent to biodiesel production. In this study, methanol-tolerant lipase M37 from Photobacterium lipolyticum was immobilized using the cross-linked enzyme aggregate (CLEA) method. Lipase M37 has a high lysine content (9.7%) in its protein sequence. Most lysine residues are located evenly over the surface of the protein, except for the lid structure region, which makes the CLEA preparation yield quite high (~93%). CLEA M37 evidences an optimal temperature of $30^{\circ}C$, and an optimal pH of 9-10. It was stable up to $50^{\circ}C$ and in a pH range of 4.0-11.0. Both soluble M37 and CLEA M37 were stable in the presence of high concentrations of methanol, ethanol, 1-propanol, and n-butanol. That is, their activities were maintained at solvent concentrations above 10% (v/v). CLEA M37 could produce biodiesel from olive oil and alcohols such as methanol and ethanol. Additionally, CLEA M37 generated biodiesel via both 2-step methanol feeding procedures. Considering its physical stability and reusability, CLEA M37 may potentially be used as a catalyst in organic synthesis, including the biodiesel production reaction.

Effect of electrical stimulation on disused rat soleus (전기자극이 흰쥐의 가자미근 무용성 위축에 미치는 영향)

  • Bae Sung Soo;Park Rae Joon;Kim Jin Sang;Park Sang OK
    • The Journal of Korean Physical Therapy
    • /
    • v.3 no.1
    • /
    • pp.175-188
    • /
    • 1991
  • A study was performed to investigate the effect of electrical stimulation on disused rat soleus muscle, of male rat. The animal's hindlimbs were immobilized 4weeks by plaster of paris, and stimulated with E. S. T for 4weeks (20min/day) The changes on soleus were examined with histochemical, histological, and morphometric method. The results are summarized as follows. 1. Disued atrophy group from immobilization, which margin of sarcolemma and myofibril in sarcoplasm were not cleared, also degenerated from necrosis with phagocytosis. 2. The numbers of nuclear were much increased and accumulation of nuclear were finded, and relatively muscular atrophic changed. 3. Increased inflammatory cyte, also finded neutrophil and macrophage. 4. Relatively atrophic changed from severe fibrosis by incleased connectivetissue. 5. The glycogen granules were much decreased in E. S. T group. It means that electrical stimulation effected the muscle exercise. 6, The activity of the NADH-TR reaction of E. S. T. Tgroup were white muscle group are transformed into red muscle fiber than normal group. 7. These results indicate that the electrical stimulation effected to soleus also prevention and delayed muscular atrophy.

  • PDF

Arthroscopic Reduction of Irreducible Knee Dislocation - A Case Report - (정복 불가능한 슬관절 탈구의 관절경적 치료)

  • Jeong, Jin-Young
    • Journal of the Korean Arthroscopy Society
    • /
    • v.13 no.2
    • /
    • pp.161-164
    • /
    • 2009
  • Irreducible knee dislocation is a rare injury and often need an open procedure with ligaments reconstruction. This report describes a case of arthroscopic treatment of a patient with traumatic knee dislocation unable to reduce in a closed method. MRI revealed incarceration of the medial collateral ligament and capsule in the medial compartment. And arthroscopic examination confirmed incarcerated medial capsuloligamentous structures which prevented the knee from reduction. Arthroscopic procedure without ligaments reconstruction was complete when the medial condyle was well visualized and the knee reduced. After 4 weeks of immobilization in extension, range of motion exercise and gradual increases in weight bearing was allowed. At the 3- year follow-up, mild laxity was remained but the patient did not have any discomfort of doing ADL activity and showed full range of motion of the knee.

  • PDF

Magnesium potassium phosphate cements to immobilize radioactive concrete wastes generated by decommissioning of nuclear power plants

  • Pyo, Jae-Young;Um, Wooyong;Heo, Jong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2261-2267
    • /
    • 2021
  • This paper evaluates the efficacy of magnesium potassium phosphate cements (MKPCs) as waste forms for the solidification of radioactive concrete powder wastes produced by the decommissioning of nuclear power plants. MKPC specimens that contained up to 50 wt% of simulated concrete powder wastes (SCPWs) were evaluated. We measured the porosity and compressive strength of the MKPC specimens, observing them using scanning electron microscopy and X-ray diffraction. The addition of SCPWs reduced the porosity and increased the compressive strength of the MKPC specimens. Struvite-K crystals were well-synthesized, and no additional crystal phase was formed. After thermal cycling and after immersion, MKPC specimens with 50 wt% SCPWs satisfied the waste-acceptance criteria (WAC) for compressive strength. Semi-dynamic leaching tests were performed using the ANS 16.1 method; the leachability indices of Cs, Co, and Sr were 11.45, 17.63, and 15.66, respectively, which also satisfy the WAC. Thus, MKPCs can provide stable matrices to immobilize radioactive concrete wastes generated by the decommissioning of nuclear power plants.

Enhanced Arsenic(V) Removal from Aqueous Solution by a Novel Magnetic Biochar Derived from Dairy Cattle Manure

  • Akyurek, Zuhal;Celebi, Hande;Cakal, Gaye O.;Turgut, Sevnur
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.423-432
    • /
    • 2022
  • Magnetic biochar produced from pyrolysis of dairy cattle manure was used to develop an effective sorbent for arsenic purification from aqueous solution. Biomass and magnetized biomass were pyrolyzed in a tube furnace with 10 ℃/min heating rate at 450 ℃ under nitrogen flow of 100 cm3/min for 2 h. Biochars were characterized by SEM-EDX, BET, XDR, FTIR, TGA, zeta potential analysis. The resultant biochar and magnetic biochar were opposed to 50-100-500 ppm As(V) laden aqueous solution. Adsorption experiments were performed by using ASTM 4646-03 batch method. The effects of concentration, pH, temperature and stirring rate on adsorption were evaluated. As(V) was successfully removed from aqueous solution by magnetic biochar due to its highly porous structure, high aromaticity and polarity. The results suggest dairy cattle manure pyrolysis is a promising route for managing animal manure and producing a cost effective biosorbent for efficient immobilization of arsenic in aqueous solutions.

Quantitative Assay of Hepatitis B Surface Antigen by Using Surface Plasmon Resonance Biosensor

  • Hwang, Sang-Yoon;Yoo, Chang-Hoon;Jeon, Jun-Yeoung;Choi, Sung-Chul;Lee, Eun-Kyu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.309-314
    • /
    • 2005
  • We performed a basic experiment for the rapid, on-line, real-time measurement of hepatitis B surface antigen using a surface plasmon resonance biosensor. We immobilized anti­HBsAg (hepatitis B surface antigen) polyclonal antibody, as a ligand, to the dextran layer on a CM5 chip surface that had previously been activated by N-hydroxysuccinimide. A sample solution containing HBsAg was fed through a microfluidic channel, and the reflecting angle change due to the mass increase from the binding was detected. The binding characteristics between HBsAg and its polyclonal antibody followed the typical monolayer adsorption isotherm. When the entire immobilized antibody had interacted, no additional, non-specific binding occurred, suggesting the immunoreaction was very specific. The bound antigen per unit mass of the antibody was independent of the immobilized ligand density. No significant steric hindrance was observed at an immobilization density of approximately $17.6 ng/mm^2$. The relationship between the HBsAg concentration in the sample solution and the antigen bound to the ligand was linear up to ca. $40{\mu}g$/mL. This linearity was much higher than that of the ELISA method. It appeared the anti­gen-antibody binding increased as the immobilized ligand density increased. In summary, this study showed the potential of this SPR biosensor-based method as a rapid, simple and multi­sample on-line assay. Once properly validated, it may serve as a more efficient method for HBsAg quantification for replacing the ELISA.

Surface Modification of Polypropylene Membrane by ${\gamma}$ Irradiation Methods and their Solutes Permeation Behaviors

  • Shim, J. K.;Lee, S. H.;Kwon, O. H.;Lee, Y. M.;Nho, Y. C.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.99-101
    • /
    • 1998
  • 1. Introduction : The conventional grafting polymerization technique requires chemically reactive groups on the surface as well as on the polymer chains. For this reason, a series of prefunctionalization steps are necessary for covalent grafting. The surface prefunctionalizational technique for grafting can be used to ionization radiation, UV, plasma, ion beam or chemical initiators. Of these techniques, radiation method is one of the useful methods because of uniform and rapid creation of active radical sites without catalytic contamination in grafted samples. If the diffusion of monomer into polymer is large enough to come to the inside of polymer substrate, a homogeneous and uniform grafting reaction can be carried out throughout the whole polymer substrate. Radiation-induced grafting method may attach specific functional moieties to a polymeric substrate, such as preirradiation and simultaneous irradiation. The former is irradiated at backbone polymer in vacuum or nitrogen gas and air, and then subsequent monomer grafting by trapped or peroxy radicals, while the latter is irradiated at backbone polymer in the presence of the monomer. Therefore, radiation-induced polymerization can be used to modification of the chemical and physical properties of the polymeric materials and has attracted considerable interest because it imparts desirable properties such as blood compatibility. membrane quality, ion excahnge, dyeability, protein adsorption, and immobilization of bioactive materials. Synthesizing biocompatible materials by radiation method such as preirradiation or simultaneous irradiation has often used $\gamma$-rays to graft hydrophilic monomers onto hydrophobic polymer substrates. In this work, in attempt to produce surfaces that show low levels of anti-fouling of bovine serum albumin(BSA) solutions, hydroxyethyl methacrylate(HEMA) was grafted polypropylene membrane surfaces by preirradiation technique. The anti-fouling effect of the polypropylene membrane after grafting was examined by permeation BSA solution.

  • PDF