DOI QR코드

DOI QR Code

Magnesium potassium phosphate cements to immobilize radioactive concrete wastes generated by decommissioning of nuclear power plants

  • Pyo, Jae-Young (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Um, Wooyong (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Heo, Jong (Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH))
  • Received : 2020.09.06
  • Accepted : 2021.01.05
  • Published : 2021.07.25

Abstract

This paper evaluates the efficacy of magnesium potassium phosphate cements (MKPCs) as waste forms for the solidification of radioactive concrete powder wastes produced by the decommissioning of nuclear power plants. MKPC specimens that contained up to 50 wt% of simulated concrete powder wastes (SCPWs) were evaluated. We measured the porosity and compressive strength of the MKPC specimens, observing them using scanning electron microscopy and X-ray diffraction. The addition of SCPWs reduced the porosity and increased the compressive strength of the MKPC specimens. Struvite-K crystals were well-synthesized, and no additional crystal phase was formed. After thermal cycling and after immersion, MKPC specimens with 50 wt% SCPWs satisfied the waste-acceptance criteria (WAC) for compressive strength. Semi-dynamic leaching tests were performed using the ANS 16.1 method; the leachability indices of Cs, Co, and Sr were 11.45, 17.63, and 15.66, respectively, which also satisfy the WAC. Thus, MKPCs can provide stable matrices to immobilize radioactive concrete wastes generated by the decommissioning of nuclear power plants.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT) (No. 2017M2B2B1072405).

References

  1. IAEA, Nuclear Power Reactors in the World, 2019. Vienna, https://www.iaea.org/publications/13552/nuclear-power-reactors-in-the-worlddf.
  2. A. Cregut, J. Roger, Inventory of information for the identification of guiding principles in the decommissioning of nuclear installations, Euratom. No. EUR13 (1991) 90.
  3. IAEA, Radiological Characterization of Shut Down Nuclear Reactors for Decommissioning Purposes, 1998. Vienna, http://www-pub.iaea.org/MTCD/Publications/PDF/TRS389_scr.pdf.
  4. M. Kinno, K.I. Kimura, T. Nakamura, Raw materials for low-activation concrete neutron shields, J. Nucl. Sci. Technol. 39 (2002) 1275-1280, https://doi.org/10.1080/18811248.2002.9715321.
  5. K.S. Dickerson, M.J. Wilson-Nichols, M.I. Morris, Contaminated Concrete: Occurrence and Emerging Technologies for DOE Decontamination, Oak Ridge National Lab., 1995. No. DOE/ORO-2034.
  6. M.J. Angus, S.R. Hunter, J. Ketchen, Classification of contaminated and neutron-activated concretes from nuclear facilities prior to their decontamination or decommissioning, Waste Manag. 90 (1990). CONF-900210-VOL.2.
  7. NEA, The NEA Co-operative Programe on Decommissioning, Decontamination and Demolition of Concrete Structures, 2011.
  8. M. Hashish, D.C. Echert, Abrasive-waterjet deep kerfing and waterjet surface cleaning for nuclear facilities, J. Eng. Ind. 111 (1989) 269-281, https://doi.org/10.1115/1.3188759.
  9. M. Castellote, C. Andrade, C. Alonso, Nondestructive decontamination of mortar and concrete by electro-kinetic methods: application to the extraction of radioactive heavy metals, Environ. Sci. Technol. 36 (2002) 2256-2261, https://doi.org/10.1021/es015683c.
  10. D. Gurau, R. Deju, The use of chemical gel for decontamination during decommissioning of nuclear facilities, Radiat. Phys. Chem. 106 (2015) 371-375, https://doi.org/10.1016/j.radphyschem.2014.08.022.
  11. A.N. Nikolaev, O.K. Karlina, A.Y. Yurchenko, Y.V. Karlin, Assessment of 137Cs decontamination of concrete by the reagent method, At. Energy. 112 (2012) 57-62, https://doi.org/10.1007/s10512-012-9524-7.
  12. P.V. Samuleev, W.S. Andrews, K.A.M. Creber, P. Azmi, D. Velicogna, W. Kuang, K. Volchek, Decontamination of radionuclides on construction materials, J. Radioanal. Nucl. Chem. 296 (2013) 811-815, https://doi.org/10.1007/s10967-012-2146-7.
  13. B.Y. Min, W.K. Choi, K.W. Lee, Separation of clean aggregates from contaminated concrete waste by thermal and mechanical treatment, Ann. Nucl. Energy 37 (2010) 16-21, https://doi.org/10.1016/j.anucene.2009.10.010.
  14. A.S. Wagh, Chemically Bonded Phosphate Ceramics: Twenty-First Century Materials with Diverse Applications, second ed., 2016, https://doi.org/10.1016/B978-0-08-044505-2.X5000-5. Amsterdam.
  15. B.E.I. Abdelrazig, J.H. Sharp, B. El-Jazairi, The microstructure and mechanical properties of mortars made from magnesia-phosphate cement, Cement Concr. Res. 19 (1989) 247-258, https://doi.org/10.1016/0008-8846(89)90089-6.
  16. E. Soudee, J. Pera, Influence of magnesia surface on the setting time of magnesia-phosphate cement, Cement Concr. Res. 32 (2002) 153-157, https://doi.org/10.1016/S0008-8846(01)00647-0.
  17. Q. Yang, B. Zhu, X. Wu, Characteristics and durability test of magnesium phosphate cement-based material for rapid repair of concrete, Mater. Struct. 33 (2000) 229-234, https://doi.org/10.1007/bf02479332.
  18. F. Qiao, C.K. Chau, Z. Li, Property evaluation of magnesium phosphate cement mortar as patch repair material, Construct. Build. Mater. 24 (2010) 695-700, https://doi.org/10.1016/j.conbuildmat.2009.10.039.
  19. D. Singh, V.R. Mandalika, S.J. Parulekar, A.S. Wagh, Magnesium potassium phosphate ceramic for 99Tc immobilization, J. Nucl. Mater. 348 (2006) 272-282, https://doi.org/10.1016/j.jnucmat.2005.09.026.
  20. I. Buj, J. Torras, M. Rovira, J. de Pablo, Leaching behaviour of magnesium phosphate cements containing high quantities of heavy metals, J. Hazard Mater. 175 (2010) 789-794, https://doi.org/10.1016/j.jhazmat.2009.10.077.
  21. A.S. Wagh, R. Strain, S.Y. Jeong, D. Reed, T. Krause, D. Singh, Stabilization of Rocky Flats Pu-contaminated ash within chemically bonded phosphate ceramics, J. Nucl. Mater. 265 (1999) 295-307, https://doi.org/10.1016/S0022-3115(98)00650-3.
  22. D. Chartier, J. Sanchez-Canet, P. Antonucci, S. Esnouf, J.P. Renault, O. Farcy, D. Lambertin, S. Parraud, H. Lamotte, C.C.D. Coumes, Behaviour of magnesium phosphate cement-based materials under gamma and alpha irradiation, J. Nucl. Mater. (2020), https://doi.org/10.1016/j.jnucmat.2020.152411.
  23. S.E. Vinokurov, S.A. Kulikova, V.V. Krupskaya, B.F. Myasoedov, Magnesium Potassium Phosphate Compound for Radioactive Waste Immobilization: Phase Composition, Structure, and Physicochemical and Hydrolytic Durability, Radiochemistry, 2018, https://doi.org/10.1134/S1066362218010125.
  24. D.A. Burbank, Waste Acceptance Criteria for the Immobilized Low Activity Waste (ILAW) Disposal Facility, 2002, https://doi.org/10.2172/807982. United States.
  25. J.J. Kim, D.J. Kim, S.T. Kang, J.H. Lee, Influence of sand to coarse aggregate ratio on the interfacial bond strength of steel fibers in concrete for nuclear power plant, Nucl. Eng. Des. 252 (2012) 1-10, https://doi.org/10.1016/j.nucengdes.2012.07.004.
  26. L.J. Gardner, S.A. Bernal, S.A. Walling, C.L. Corkhill, J.L. Provis, N.C. Hyatt, Response to the discussion by Hongyan Ma and Ying Li of the paper "Characterization of magnesium potassium phosphate cement blended with fly ash and ground granulated blast furnace slag, Cement Concr. Res. 103 (2018) 249-253, https://doi.org/10.1016/j.cemconres.2017.07.011.
  27. G.B. Josephson, J.H. Westsik, R.P. Pires, J. Bickford, M.W. Foote, Engineering-scale Demonstration of DuraLith and Ceramicrete Waste Forms, Pacific Northwest National Lab.(PNNL), 2011, https://doi.org/10.2172/1027183.Richland, WA (United States).
  28. M. Le Rouzic, T. Chaussadent, L. Stefan, M. Saillio, On the influence of Mg/P ratio on the properties and durability of magnesium potassium phosphate cement pastes, Cement Concr. Res. 96 (2017) 27-41, https://doi.org/10.1016/j.cemconres.2017.02.033.
  29. H. Ma, B. Xu, Z. Li, Magnesium potassium phosphate cement paste: degree of reaction, porosity and pore structure, Cement Concr. Res. 65 (2014) 96-104, https://doi.org/10.1016/j.cemconres.2014.07.012.
  30. H. Ma, Y. Li, Discussion of the paper "Characterisation of magnesium potassium phosphate cement blended with fly ash and ground granulated blast furnace slag" by L.J. Gardner et al, Cement Concr. Res. 103 (2018) 245-248, https://doi.org/10.1016/j.cemconres.2017.07.013.
  31. ASTM, Test Method for Thermal Cycling of Electroplated Plastics, 1985.
  32. ANS, Measurement of the Leachability of Solidified Low-Level Radioactive Wastes by a Short-Term Procedure, 2009.
  33. M.J. Varas, M.A. De Buergo, R. Fort, Natural cement as the precursor of Portland cement: methodology for its identification, Cement Concr. Res. 35 (2005) 2055-2065, https://doi.org/10.1016/j.cemconres.2004.10.045.
  34. P. Hou, R. Zhang, X. Cheng, Case study of the gradient features of in situ concrete, Case Stud. Constr. Mater. 1 (2014) 154-163, https://doi.org/10.1016/j.cscm.2014.08.003.
  35. K. De Weerdt, M. Ben Haha, G. Le Saout, K.O. Kjellsen, H. Justnes, B. Lothenbach, Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash, Cement Concr. Res. 41 (2011) 279-291, https://doi.org/10.1016/j.cemconres.2010.11.014.
  36. L. Alarcon-Ruiz, G. Platret, E. Massieu, A. Ehrlacher, The use of thermal analysis in assessing the effect of temperature on a cement paste, Cement Concr. Res. 35 (2005) 609-613, https://doi.org/10.1016/j.cemconres.2004.06.015.
  37. P. Chindaprasirt, C. Jaturapitakkul, T. Sinsiri, Effect of fly ash fineness on microstructure of blended cement paste, Construct. Build. Mater. 21 (2007) 1534-1541, https://doi.org/10.1016/j.conbuildmat.2005.12.024.
  38. L.J. Gardner, S.A. Bernal, S.A. Walling, C.L. Corkhill, J.L. Provis, N.C. Hyatt, Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag, Cement Concr. Res. 74 (2015) 78-87, https://doi.org/10.1016/j.cemconres.2015.01.015.
  39. W. Zhu, J.J. Hughes, N. Bicanic, C.J. Pearce, Nanoindentation mapping of mechanical properties of cement paste and natural rocks, Mater. Char. 58 (2007) 1189-1198, https://doi.org/10.1016/j.matchar.2007.05.018.
  40. H. Ma, B. Xu, J. Liu, H. Pei, Z. Li, Effects of water content, magnesia-to-phosphate molar ratio and age on pore structure, strength and permeability of magnesium potassium phosphate cement paste, Mater. Des. 64 (2014) 497-502, https://doi.org/10.1016/j.matdes.2014.07.073.
  41. I. Buj, J. Torras, D. Casellas, M. Rovira, J. de Pablo, Effect of heavy metals and water content on the strength of magnesium phosphate cements, J. Hazard Mater. 170 (2009) 345-350, https://doi.org/10.1016/j.jhazmat.2009.04.091.
  42. A.J. Wang, J. Zhang, J.M. Li, A.B. Ma, L.T. Liu, Effect of liquid-to-solid ratios on the properties of magnesium phosphate chemically bonded ceramics, Mater. Sci. Eng. C 33 (2013) 2508-2512, https://doi.org/10.1016/j.msec.2013.02.014.
  43. S. Diamond, A critical comparison of mercury porosimetry and capillary condensation pore size distributions of portland cement pastes, Cement Concr. Res. (1971), https://doi.org/10.1016/0008-8846(71)90058-5.
  44. H. Dong, P. Gao, G. Ye, Characterization and comparison of capillary pore structures of digital cement pastes, Mater. Struct. Constr. (2017), https://doi.org/10.1617/s11527-017-1023-9.
  45. R. Kumar, B. Bhattacharjee, Porosity, pore size distribution and in situ strength of concrete, Cement Concr. Res. (2003), https://doi.org/10.1016/S0008-8846(02)00942-0.
  46. H. Ma, B. Xu, Potential to design magnesium potassium phosphate cement paste based on an optimal magnesia-to-phosphate ratio, Mater. Des. 118 (2017) 81-88, https://doi.org/10.1016/j.matdes.2017.01.012.
  47. D.P. Bentz, Influence of water-to-cement ratio on hydration kinetics: simple models based on spatial considerations, Cement Concr. Res. (2006), https://doi.org/10.1016/j.cemconres.2005.04.014.
  48. S. V Mattigod, J.H. Westsik, C.-W. Chung, M.J. Lindberg, K.E. Parker, Waste Acceptance Testing of Secondary Waste Forms: Cast Stone, Ceramicrete and DuraLith, Pacific Northwest National Lab.(PNNL), 2011, https://doi.org/10.2172/1027185. Richland, WA (United States).
  49. D. Singh, R. Ganga, J. Gaviria, Y. Yusufoglu, Secondary Waste Form Testing : Ceramicrete Phosphate Bonded ceramics., ANL-11/16, Argonne Natl. Labratory, 2011, https://doi.org/10.2172/1020703.
  50. A.S. Wagh, S.Y. Sayenko, V.A. Shkuropatenko, R.V. Tarasov, M.P. Dykiy, Y.O. Svitlychniy, V.D. Virych, Y.A. Ulybkina, Experimental study on cesium immobilization in struvite structures, J. Hazard Mater. 302 (2016) 241-249, https://doi.org/10.1016/j.jhazmat.2015.09.049.
  51. S.E. Vinokurov, Y.M. Kulyako, O.M. Slyuntchev, S.I. Rovny, B.F. Myasoedov, Low-temperature immobilization of actinides and other components of high-level waste in magnesium potassium phosphate matrices, J. Nucl. Mater. 385 (2009) 189-192, https://doi.org/10.1016/j.jnucmat.2008.09.053.

Cited by

  1. Effects of Water-to-Cement Ratios on the Properties of Magnesium Potassium Phosphate Cement Prepared with Lithium-Extracted Magnesium Residue vol.11, pp.9, 2021, https://doi.org/10.3390/app11094193
  2. A study on magnesium phosphate cement mortars reinforced by polyvinyl alcohol fibers vol.302, 2021, https://doi.org/10.1016/j.conbuildmat.2021.124154