• Title/Summary/Keyword: Immersive Virtual Reality (VR)

Search Result 140, Processing Time 0.038 seconds

Real-time 3D Audio Downmixing System based on Sound Rendering for the Immersive Sound of Mobile Virtual Reality Applications

  • Hong, Dukki;Kwon, Hyuck-Joo;Kim, Cheong Ghil;Park, Woo-Chan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5936-5954
    • /
    • 2018
  • Eight out of the top ten the largest technology companies in the world are involved in some way with the coming mobile VR revolution since Facebook acquired Oculus. This trend has allowed the technology related with mobile VR to achieve remarkable growth in both academic and industry. Therefore, the importance of reproducing the acoustic expression for users to experience more realistic is increasing because auditory cues can enhance the perception of the complicated surrounding environment without the visual system in VR. This paper presents a audio downmixing system for auralization based on hardware, a stage of sound rendering pipelines that can reproduce realiy-like sound but requires high computation costs. The proposed system is verified through an FPGA platform with the special focus on hardware architectural designs for low power and real-time. The results show that the proposed system on an FPGA can downmix maximum 5 sources in real-time rate (52 FPS), with 382 mW low power consumptions. Furthermore, the generated 3D sound with the proposed system was verified with satisfactory results of sound quality via the user evaluation.

Immersive urban flood simulation using virtual reality simulation environment (가상현실 모의환경을 활용한 몰입형 도시 침수 모의)

  • Sooncheol Hwang;Sangyoung Son
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.110-110
    • /
    • 2023
  • 기후변화, 도시화 등 다양한 요인에 의하여 도시 침수 위험성은 더욱 커지고 있다. 높은 인구밀도와 더불어 학교, 병원 등 인프라가 집중된 도시지역의 경우 대규모 홍수가 발생할 경우 수많은 인적, 경제적 피해로 이어지게 된다. 도시지역 내 침수 위험성을 최소화하기 위해 정확하고 빠른 도시침수모형의 개발과 더불어 사전에 이를 최소화하기 위한 방재교육의 중요성이 더욱 강조되고 있다. 가상현실 (Virtual Reality, VR) 기술은 높은 몰입감을 통해 사용자의 자발적 참여를 유도하여 기존의 교육매체 대비 높은 교육적 효과를 보이고 있다. 특히 침수 등 인명피해 위험성을 내재한 재해에의 VR 적용은 위험성을 동반하지 않아 더욱 효과적이다. 종래의 VR 기반 침수 방재교육은 침수의 동수역학적 거동과 대상 지역의 지리적 특성을 적절히 고려하지 못하여 방재교육에는 효과적이나 방재시스템으로의 활용엔 한계가 있다. 본 연구는 몰입형 파랑해석모형인 Celeris Base를 토대로 몰입형 도시 침수 수치모형을 개발하였다. Unity3D로 개발된 Celeris Base는 가상현실 장비인 HMD (Head Mounted Display) 기술을 이용하여 실시간 모의결과를 360도 가상현실 공간 내에 가시화할 수 있다. 도시지역 내 강우에 의한 침수를 모의하기 위해 연속방정식 내에 강우, 침투 항을 고려하였다. 침투모형으로는 도시지역 내 침수모의에 일반적으로 사용되는 NRCS-CN 방법을 사용하였다. 본 연구는 개발모형을 이용하여 2022년 8월 발생한 집중호우에 의한 강남역 일대 침수 사상을 수치적으로 재현하고, 이를 가상현실 모의환경 내에 가시화하였다. 모의결과는 집중호우 발생 시 지형적 특성에 따라 강남역과 역삼역 인근에서 집중적으로 침수피해가 발생하였음을 확인하였다.

  • PDF

VR Interface for Immersive Expression of the User's Walking, Running, Limp and Zombie States (사용자의 걷기, 뛰기, 절름발이 움직임을 몰입감 있게 표현하기 위한 VR 인터페이스)

  • Moon, YeRin;Park, Seong-A;Park, Soyeon;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.549-552
    • /
    • 2022
  • 본 논문에서는 가상현실에서 헤드 마운티드 디스플레이(Head mounted display, HMD) 사용자와 Non-HMD 사용자에게 사용자의 걷기, 뛰기, 절름발이 움직임을 몰입감 있게 표현하기 위한 새로운 가상현실(VR, Virtual Reality) 인터페이스를 제안한다. 가상현실에서는 몰입감을 높이기 위해 시각적 감각을 활용한 HMD와 사용자의 자세나 움직임을 추적하는 장비를 활용하지만, 일반적인 사용자들에게 HMD 보급은 많이 이루어져 있지 않으며, 비용적인 측면과 멀미로 인해 가상현실 콘텐츠에 몰입하기 어렵다. 본 논문에서는 효율적으로 몰입도를 높이고 비용적인 부담을 줄여주기 위해 아두이노를 활용한 새로운 보행 인터페이스 장치를 제안한다. 보행 인터페이스 장치는 사용자의 다리 가속도 정보를 기반으로 사용자의 상태 변화에 맞게 패턴을 설정하여 사용자의 걷기, 뛰기, 절름발이 움직임을 통해 사용자 캐릭터의 움직임을 제어하고 표현할 수 있는 새로운 결과를 보여준다.

  • PDF

360-degree Video Streaming System for Large-scale Immersive Displays (대형 가상현실 공연장을 위한 360도 비디오 스트리밍 시스템)

  • Yeongil, Ryu;Kon Hyong, Kim;Andres, Cabrera;JoAnn, Kuchera-Morin;Sehun, Jeong;Eun-Seok, Ryu
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.848-859
    • /
    • 2022
  • This paper presents a novel 360-degree video streaming system for large-scale immersive displays and its ongoing implementation. Recent VR systems aim to provide a service for a single viewer on HMD. However, the proposed 360-degree video streaming system enables multiple viewers to explore immersive contents on a large-scale immersive display. The proposed 360-degree video streaming system is being developed in 3 research phases, with the final goal of providing 6DoF. Currently, the phase 1: implementation of the 3DoF 360-degree video streaming system prototype is finished. The implemented prototype employs subpicture-based viewport-dependent streaming technique, and it achieved bit-rate saving of about 80% and decoding speed up of 543% compared to the conventional viewport-independent streaming technique. Additionally, this paper demonstrated the implemented prototype on UCSB AlloSphere, the large-scale instrument for immersive media art exhibition.

Virtual Reality Contents for Rehabilitation Training Utilizing Skeletal Data and Foot Pressure Mat (골격 데이터와 발 압력매트를 활용한 재활 훈련용 가상 현실 콘텐츠)

  • Jongwook Si;Hyeri Jeong;Sangjin Lee;Sungyoung Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.5
    • /
    • pp.330-338
    • /
    • 2024
  • With the growing interest in rehabilitation therapy and exercise programs, there is an increasing need for smart content that simultaneously addresses both health and engagement. Particularly, exercises performed in a state of physical imbalance carry a high risk of injury, making it essential to detect and integrate balance into the training process. This paper proposes Rehabilitation Training program that combines a pressure platform with virtual reality (VR) technology to address this issue. The program enables users to perform exercises such as squats, stationary walking, and forward-backward walking in a VR environment, utilizing real-time foot pressure data captured through a pressure mat. Additionally, an algorithm based on YOLOv8-pose extracted skeletal coordinates is proposed to assess body balance and automatically count squat repetitions. The experimental results showed an average accuracy of 87.9% for each posture, confirming that users can be provided with a safer, more efficient, and immersive training experience through this approach.

Understanding the Importance of Presenting Facial Expressions of an Avatar in Virtual Reality

  • Kim, Kyulee;Joh, Hwayeon;Kim, Yeojin;Park, Sohyeon;Oh, Uran
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.120-128
    • /
    • 2022
  • While online social interactions have been more prevalent with the increased popularity of Metaverse platforms, little has been studied the effects of facial expressions in virtual reality (VR), which is known to play a key role in social contexts. To understand the importance of presenting facial expressions of a virtual avatar under different contexts, we conducted a user study with 24 participants where they were asked to have a conversation and play a charades game with an avatar with and without facial expressions. The results show that participants tend to gaze at the face region for the majority of the time when having a conversation or trying to guess emotion-related keywords when playing charades regardless of the presence of facial expressions. Yet, we confirmed that participants prefer to see facial expressions in virtual reality as well as in real-world scenarios as it helps them to better understand the contexts and to have more immersive and focused experiences.

Visualization of Welded Connections based on Shader for Virtual Welding Training (가상현실 용접 훈련을 위한 쉐이더 기반 특수효과 표현)

  • Oh, Soobin;Jo, Dongsik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.479-481
    • /
    • 2019
  • In recent years, training systems in various industrial fields have been made using virtual reality (VR) technology and widely used in education. Virtual reality based training system is safe, there is no waste of material, and there are many advantages to be able to practice anytime and anywhere. For example, virtual reality welding training simulation system is widely used for field worker because it can perform actual joining of steel plate in immersive environment. At this time, realistic representation of the steel plate joint is important to maximize the effectiveness of the training, but existing techniques have limited the natural expression of the effect. In this study, we propose a method of visualizing joint effect based on shader in order to construct welding training system. The results of this study can be applied to the welding training system to improve the weld training effect to provide the user with high-quality visualization.

  • PDF

Enhancing the digitization of cultural heritage: State-of-Practice

  • Nguyen, Thu Anh;Trinh, Anh Hoang;Pham, Truong-An
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1075-1084
    • /
    • 2022
  • The use of Hi-Tech in cultural heritage preservation and the promotion of cultural heritage values in general, particularly artifacts, opens new opportunities for attracting tourists while also posing a challenge due to the need to reward high-quality excursions to visitors historical and cultural values. Building Information Modeling (BIM) and Hi-Tech in new building management have been widely adopted in the construction industry; however, Historic Building Information Modeling (HBIM) is an exciting challenge in 3D modeling and building management. For those reasons, the Scan-to-HBIM approach involves generating an HBIM model for existing buildings from the point cloud data collected by Terrestrial 3D Laser Scanner integrated with Virtual Reality (VR), Augmented Reality (AR), contributes to spatial historic sites simulation for virtual experiences. Therefore, this study aims to (1) generate the application of Virtual Reality, Augmented Reality to Historic Building Information Modeling - based workflows in a case study which is a monument in the city; (2) evaluate the application of these technologies to improve awareness of visitors related to the promotion of historical values by surveying the experience before and after using this application. The findings shed light on the barriers that prevent users from utilizing technologies and problem-solving solutions. According to the survey results, after experiencing virtual tours through applications and video explanations, participant's perception of the case study improved. When combined with emerging Hi-Tech and immersive interactive games, the Historic Building Information Modeling helps increase information transmission to improve visitor awareness and promote heritage values.

  • PDF

A Study on the VR-based Drone Immersive Content Development and Experience Effect (VR기반 드론 실감형 콘텐츠 개발 및 체험효과에 관한 연구)

  • Lee, In-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.663-671
    • /
    • 2022
  • Practice through virtual reality can increase the educational effect regardless of time and place, and it is an educational method that is being pursued even in the situation of COVID-19. On the other hand, for VR-based education, related technology development and content development must be made, and experiential methods (flipped learning, blended learning, hybrid learning) must be provided in the educational process. The development scenario was developed with the contents of drone qualification test (ultra-light unmanned multicopter) and drone practice and the possibility of non-face-to-face self-directed learning (flipped learning, blended learning, hybrid learning). It is expected that the quality of vocational education related to drones and the effect of high education will be improved through the contents, and it is thought that it will be possible to suggest a direction for the development of various vocational education contents in non-face-to-face education.

Display Technologies for Immersive Devices and Electronic Skin (디스플레이 현황과 발전방향 -실감 및 스킨 기기로의 확대)

  • Park, Y.J.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.2
    • /
    • pp.10-18
    • /
    • 2019
  • Since the introduction of CRT(Cathode Ray Tube) in the 1950s, display technologies have been developed continuously. Flat panel displays such as PDP(Plasma Display Panel) and LCD(Liquid Crystal Display) were commercialized in the late 1990s, and OLED(Organic Light Emitting Diodes) and Micro-LED(Micro-Light Emitting Diodes) are now being developed and are becoming widespread. In the future, we expect to develop ultra-realistic, flexible, embedded sensor displays. Ultra-realistic display can be applied to AR/VR(Augmented Reality/Virtual Reality) devices and spatial light modulators for holography. The sensor-embedded display can be applied to robots; electronic skin; and security devices, including iris recognition sensors, fingerprint recognition sensors, and tactile sensors. AR/VR technology must be developed to meet technical requirements such as viewing angle, resolution, and refresh rate. Holography requires optical modulation technology that can significantly improve resolution, viewing angle, and modulation method to enable wide-view and high-quality hologram stereoscopic images. For electronic skin, stable mass production technology, large-area arrays, and system integration technologies should be developed.