• Title/Summary/Keyword: Immersed boundary - lattice Boltzmann method

Search Result 12, Processing Time 0.023 seconds

Force Analysis on the Nano/Micro Particle in a Flow using Immersed Boundary-Lattice Boltzmann Method (가상경계-격자 볼츠만 방법을 이용한 유동장내 나노/마이크로 입자에 작용하는 힘의 해석)

  • Jo, Hong Ju;Lee, Sei Young
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.35-44
    • /
    • 2022
  • Immersed boundary-Lattice Boltzmann Method (IB-LBM) is used for the analysis of flow over the circular cylinder in the concept of fluid-structure interaction analysis (FSI). Recently, IB-LBM has shown the enormous possibility for the application of various biomedical engineering fields, such as the movement of a human body or the behavior of the blood cells and/or particle-based drug delivery system in blood vessels. In order for the numerical analysis of the interaction between fluid and solid object, immersed boundary method and lattice Boltzmann method are coupled to analyze the flow over a cylinder for low Reynolds laminar flow (Re=10, 20, 40 and 100) with Zhu-He boundary condition at the boundary. With the developed IB-LBM, the flow around the cylinder in the uniform flow is analyzed for the laminar flow and the drag and lift coefficients and recirculation length are compared to the previous results.

A numerical study of the incompressible flow over a circular cylinder near a plane wall using the Immersed Boundary - Finite Difference Lattice Boltzmann Method (가상경계 유한차분 격자 볼츠만 법을 이용한 평판근처 원형 실린 더 주위의 비압축성 유동에 관한 수치적 연구)

  • Yang, Hui-Ju;Jeong, Hae-Kwon;Kim, Lae-Sung;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2731-2736
    • /
    • 2007
  • In this paper, incompressible flow over a cylinder near a plane wall using the Immersed Boundary. Finite Difference Lattice Boltzmann Method (IB-FDLBM) is implemented. In this present method, FDLBM is mixed with IBM by using the equilibrium velocity. We introduce IBM so that we can easy to simulate bluff-bodies. With this numerical procedure, the flow past a circular cylinder near a wall is simulated. We calculated the flow patterns about various Reynolds numbers and gap ratios between a circular cylinder and plane wall. So these are enabled to observe for vortex shedding. The numerical results are found to be in good agreement with those of previous studies.

  • PDF

NUMERICAL STUDY ON TURBULENT FLOW OVER CYLINDER USING IMMERSED BOUNDARY LATTICE BOLTZMANN METHOD WITH MULTI RELAXATION TIME (다중완화시간 가상경계볼쯔만법을 이용한 실린더 주위의 난류유동해석)

  • Kim, Hyung-Min
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.21-27
    • /
    • 2010
  • Immersed boundary lattice Boltzmann method (IBLBM) has been applied to simulate a turbulent flow over circular cylinder in a flow field effectively. Although IBLBM is very effective method to simulate the flow over a complex shape of obstacle in the flow field regardless of the constructed grids in the calculation domain, the results, however, become numerically unstable in high reynolds number flow. The most effective suggestion to archive the numerical stability in high Reynolds number flow is applying the multiple relaxation time (MRT) model instead of single relaxation time(SRT) model in the collision term of lattice Boltzmann equation. In the research MRT model for IBLBM was introduced and comparing the numerical results obtained by applying SRT and MRT. The hydraulic characteristic of cylinder in a flow field between two parallel plate at the range of $Re{\leqq}2000$represented and it is also compared the drag and lifting coefficients of the cylinder calculated by IBLBM with SRT and MRT model.

NUMERICAL ANALYSIS OF THE AIRFOIL IN SELF-PROPELLED FISH MOTION USING IMMERSED BOUNDARY LATTICE BOLTZMANN METHOD (가상경계볼쯔만법을 이용한 자력추진 물고기 운동 익의 유영해석)

  • Kim, Hyung-Min
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.24-29
    • /
    • 2011
  • Immersed boundary lattice Boltzmann method has been applied to analyze the characteristics of the self-propelled fish motion swimming robot. The airfoil NACA0012 with caudal fin stroke model was considered to examine the characteristics. The foil in steady forward motion and a combination of steady-state harmonic deformation produces thrust through the formation of a flow downstream from the trailing edge. The harmonic motion of the foil causes unsteady shedding of vorticity from the trailing edge, while forming the vortices at the leading edge as well. The resultant thrust is developed by the pressure difference formed on the upper and lower surface of the airfoil. and the time averaged thrust coefficient increases as Re increase in the region of $Re{\leqq}700$. The suggested numerical method is suitable to develop the fish-motion model to control the swimming robot, however It would need to extend in 3D analysis to examine the higher Re and to determine the more detail mechanism of thrust production.

Numerical study on motion characteristics of a free falling two-dimensional circular cylinder in a channel using an Immersed Boundary - Lattice Boltzmann Method (가상경계 격자 볼츠만 법을 이용한 채널 내 자유 낙하하는 2차원 원형 실린더의 운동 특성)

  • Jeong, Hae-Kwon;Ha, Man-Yeong;Yoon, Hyun-Sik;Kim, Sung-Jool
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2489-2494
    • /
    • 2008
  • The two-dimensional circular cylinder freely falling in a channel has been simulated by using Immersed boundary - lattice Boltzmann method in order to analyze the characteristics of motion originated by the interaction between the fluid and the solid. The wide range of the solid/fluid density ratio has been considered to identify the effect of the solid/fluid density ratio on the motion characteristics such as the falling time, the terminal velocity and the trajectory in the vertical and horizontal directions. In addition, the effect of the gap between the cylinder and the wall on the motion of two-dimensional circular cylinder freely falling has been revealed by taking into account a various range of the gap size. The Reynolds number in terms of the terminal velocity is diminished as the cylinder becomes close to the wall at the initial dropping position, since the repulsive force induced between the cylinder and wall constrains the vertical motion. Quantitative information about the flow variables such as the pressure coefficient and vorticity on the cylinders is highlighted.

  • PDF

Numerical Study on Flow over Moving Circular Cylinder Near the Wall Using Immersed Boundary Lattice Boltzmann Method (가상경계 격자볼쯔만법을 이용한 벽면에 근접하여 이동하는 실린더주위의 유동해석)

  • Kim, Hyung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.924-930
    • /
    • 2008
  • Immersed boundary method (IBM) is the most effective method to overcome the disadvantage of LBM (Lattice Boltzmann Method) related to the limitation of the grid shape. IBM also make LBM possible to simulate flow over complex shape of obstacle without any treatment on the curved boundary. In the research, IBLBM was used to perform LBM simulation of a flow over a moving circular cylinder to determine the flow feature and aerodynamics characteristic of the cylinder. To ascertain the applicability of IBLBM on the moving obstacle near the wall, it was first simulated for the case of the flow over a fixed circular cylinder in a channel and the results were compared against the solution of moving cylinder in the channel using IBLBM. The simulations were performed in a moderate range of Reynolds number at each moving cylinder to identify the flow feature and aerodynamic characteristics of circular cylinder in a channel. The drag and lift coefficients of the cylinder were calculated from the simulation results. We have numerically confirmed that the critical Reynolds number for vortex shedding is Re=50 and the result is the same as the case of fixed cylinder. As the cylinder approaching to a wall (${\gamma}<2.5$), the 2nd vortex is developed by interacting with the wall boundary-layer vorticity. When the cylinder is very closed to the wall, ${\gamma}<0.6$, the cylinder acts like blockage to block the flow between the cylinder and wall so that the vortex developed on the upper cylinder elongated and time averaged lifting and drag coefficients abruptly increase.

Numerical Technique to Analyze the Flow Characteristics of a Propeller Using Immersed Boundary Lattice Boltzmann Method (가상경계 격자볼쯔만법을 이용한 프로펠러의 유동특성해석 방법에 관한 연구)

  • Kim, Hyung Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.441-448
    • /
    • 2016
  • The thrust force created by a propeller depends on the incoming flow velocity and the rotational velocity of the propeller. The performance of the propeller can be described by dimensionless variables, advanced ratio, thrust coefficient, and power coefficient. This study included the application of the immersed boundary lattice Boltzmann method (IBLBM) with the stereo lithography (STL) file of the rotating object for performance analysis. The immersed boundary method included the addition of the external force term to the LB equation defined by the velocity difference between the lattice points of the propeller and the grid points in the domain. The flow by rotating a 4-blade propeller was simulated with various Reynolds numbers (Re) (including 100, 500 and 1000), with advanced ratios in the range of 0.2~1.4 to verify the suggested method. The typical tendency of the thrust efficiency of the propeller was obtained from the simulation results of different advanced ratios. It was also necessary to keep the maximum mesh size ratio of the propeller surface to a grid size below 3. Additionally, a sufficient length of the downstream region in the domain was maintained to ensure the numerical stability of the higher Re and advanced ratio flow.

A Numerical Study of The Motion of a Circular Cylinder Suspended in a Square Enclosure (사각 밀폐계 내 자연대류에 의한 원형 실린더의 운동 특성에 관한 수치적 연구)

  • Son, Seong-Wan;Jeong, Hea-Kown;Ha, Man-Yeong;Yoon, Hyun-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.11
    • /
    • pp.727-734
    • /
    • 2010
  • The present study numerically investigates the motion of a solid body suspended in the square enclosure with natural convection. A two-dimensional circular cylinder levitated thermally has been simulated by using thermal lattice Boltzmann method(TLBM) with the direct-forcing immersed boundary method. To deal with the ascending, falling or levitation of a circular cylinder in natural convection, the immersed boundary method is expanded and coupled with the TLBM. The circular cylinder is located at the bottom of a square enclosure with no restriction on the motion and freely migrates due to the Boussinesq approximation which is employed for the coupling between the flow and temperature fields. For different density ratio between the cylinder and the fluid, the motion characteristics of the circular cylinder for various Grashof numbers have been carried out. The Prandtl number is fixed as 0.7.

Numerical Study on Aerodynamic Characteristic of the Moving Circular Cylinder Near the Wavy Wall (파형벽면에 근접하여 이동하는 원형실린더의 공력특성의 수치해석)

  • Kim, Hyung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.107-115
    • /
    • 2009
  • A Computational study was carried out in order to investigate the aerodynamic characteristics of circular cylinder moving near the wavy wall at a low Reynolds number of 50. Lattice Boltzmann method was used to simulate the flow field and immersed boundary method was combined to represent the moving cylinder and wavy wall regardless of the constructed grid in the domain. The aerodynamics characteristics of the cylinder moving near the wavy wall were represented by the comparing the lifting coefficients with various altitudes (H/D) and wave length and amplitudes of wavy wall. It indicated that the twice of increasing-decreasing variations of lifting coefficient are obtained while the cylinder moves near the wavy wall. The first variation is obtained where the cylinder locates near the peak of the wavy wall. Another variation occurs when the distance to the wavy wall becomes longer after passing the peak. It was also classified that three different patterns of relation between the lifting and drag coefficient of the cylinder. However, the classification is limited to the case of the same order of altitude, amplitude and wave length of the wavy wall.

Development of a Numerical Model for Cake Layer Formation Process on Membrane (멤브레인 케이크 레이어 형성 과정 모사를 위한 수치 모델의 개발)

  • Kim, Kyung-Ho;Shin, Jae-Ho;Lee, Sang-Hwan;Lee, Ju-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.35-44
    • /
    • 2011
  • Membrane filtration has become firmly established as a primary process for ensuring the purity, safety and efficiency of treatment of water or effluents. Several researches have been performed to develop and design membrane systems in order to increase the accuracy and performance of the processes. In this study, a lattice Boltzmann method for the cake layer has been developed using particle dynamics based on an immersed boundary method and the cake layer formation process on membrane has been numerically simulated. Case studies including various particle sizes were also performed for a microfiltration process. The growth rate of the cake layer thickness and the permeation flow rate along the membranes were predicted. The results of this study agreed well with that of previous experiments. Effects of various particle diameters on the membrane performance were studied. The cake layer of a large particle tended to be growing fast and the permeation flow going down rapidly at the beginning. The layer thickness of a small particle increased constantly and the flow rate was smaller than that of the large particle at the end of simulation time.