• Title/Summary/Keyword: Immersed Method

Search Result 520, Processing Time 0.025 seconds

The Forecd Vibration Analysis using Transfer Matrix(I) : Immersed Infinite Circular Cylindrical Shell (전달 행렬을 이용한 진동 및 방사소음 해석 (I) : 무한 원통형 몰수체)

  • 정우진;신구균;전재진;이헌곤
    • Journal of KSNVE
    • /
    • v.4 no.4
    • /
    • pp.443-449
    • /
    • 1994
  • In the analysis of circular cylindrical shell's vibration and sound radiation, there are numerical and analytical methods. Numerical methods such as F.E.M and B.E.M, have the limit of frequency range. Analytical method can be applied to the circular cylindrical shell from low frequency to high frequency. In this paper, we use the analytical method for shell, and numerical method, F.D.M, for fluid. We also use the method using transfer matrix and eigenanalysis of transfer matrix which can therefore calculate the rotational d.o.f that is very imkportant in synthesis with inner structure. Inner structure has much effect on the submerged circular cylindrical shell vibration and sound rediation. Results for the immersed circular cylindrical shell vibration and sound radiation are compared with the analytic solutions.

  • PDF

MECHANISM OF NUCLEATE BOILING HEAT TRANSFER FROM WIRES IMMERSED IN SATURATED FC-72 AND WATER (전열면적 및 유체의 종류가 핵비등 열전달에 미치는 영향과 그 원인)

  • Kim, J.H.;You, S.M.;Park, J.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.232-239
    • /
    • 2001
  • The present study is an experimental investigation of nucleate boiling heat transfer mechanism in pool boiling from wire heaters immersed in saturated FC-72 coolant and water. The vapor volume flow rate departing from a wire during nucleate boiling was determined by measuring the volume of bubbles, varying $25{\mu}m,\;75{\mu}m,\;and\;390{\mu}m$, from a wire utilizing the consecutive-photo method. The effects of the wire size on heat transfer mechanism during a nucleate boiling were investigated by measuring vapor volume flow rate and the frequency of bubbles departing from a wire immersed in saturated FC-72. One wire diameter of $390{\mu}m$ was selected and tested in saturated water to investigate the fluid effect on the nucleate boiling heat transfer mechanism. Results of the study showed that an increase in nucleate boiling heat transfer coefficients with reductions in wire diameter was related to the decreased latent heat contribution. The latent heat contribution of boiling heat transfer for the water test was found to be higher than that of FC-72. The frequency of departing bubbles was correlated as a function of bubble diameters.

  • PDF

Numerical Analysis of Heat Transfer System Using a Symmetric Flexible Vortex Generator in a Poiseuille Channel Flow (대칭 형태로 기울어진 와류 생성기를 이용한 열전달 시스템 수치 해석)

  • Kim, Jeonghyeon;Park, Sung Goon
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.1
    • /
    • pp.67-73
    • /
    • 2020
  • Flexible structures have been adopted in heat transfer systems as vortex generators. The flexible vortex generators immersed in a flow show a self-sustained oscillatory motion, which enhances fluid mixing and heat transfer. In the present study, the vortex generators in a two-dimensional channel flow are numerically investigated, and they are symmetrically mounted on the upper and lower walls with an inclination angle. The momentum interaction and heat transfer between the flexible vortex generators and the surrounding fluid are considered by using an immersed boundary method. The inclination angle is one of the important factors in determining the flapping kinematics of the flexible vortex generators. The flapping amplitude increases as the inclination angle increases, thereby enhancing fluid mixing. The heat transfer is enhanced up to 80% comparing to the baseline channel flow.

Numerical Study on Flow over Moving Circular Cylinder Near the Wall Using Immersed Boundary Lattice Boltzmann Method (가상경계 격자볼쯔만법을 이용한 벽면에 근접하여 이동하는 실린더주위의 유동해석)

  • Kim, Hyung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.924-930
    • /
    • 2008
  • Immersed boundary method (IBM) is the most effective method to overcome the disadvantage of LBM (Lattice Boltzmann Method) related to the limitation of the grid shape. IBM also make LBM possible to simulate flow over complex shape of obstacle without any treatment on the curved boundary. In the research, IBLBM was used to perform LBM simulation of a flow over a moving circular cylinder to determine the flow feature and aerodynamics characteristic of the cylinder. To ascertain the applicability of IBLBM on the moving obstacle near the wall, it was first simulated for the case of the flow over a fixed circular cylinder in a channel and the results were compared against the solution of moving cylinder in the channel using IBLBM. The simulations were performed in a moderate range of Reynolds number at each moving cylinder to identify the flow feature and aerodynamic characteristics of circular cylinder in a channel. The drag and lift coefficients of the cylinder were calculated from the simulation results. We have numerically confirmed that the critical Reynolds number for vortex shedding is Re=50 and the result is the same as the case of fixed cylinder. As the cylinder approaching to a wall (${\gamma}<2.5$), the 2nd vortex is developed by interacting with the wall boundary-layer vorticity. When the cylinder is very closed to the wall, ${\gamma}<0.6$, the cylinder acts like blockage to block the flow between the cylinder and wall so that the vortex developed on the upper cylinder elongated and time averaged lifting and drag coefficients abruptly increase.

IMMERSED BOUNDARY METHOD FOR COMPRESSIBLE VISCOUS FLOW AROUND MOVING BODIES (이동하는 물체 주위의 압축성 유동에 대한 가상경계법)

  • Cho, Yong;Chopra, Jogesh;Morris, Philip J.
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.35-43
    • /
    • 2008
  • A methodology for the simulation of compressible high Reynolds number flow over rigid and moving bodies on a structured Cartesian grid is described in this paper. The approach is based on a modified version of the Brinkman Penalization method. To avoid oscillations in the vicinity of the body and to simulate shcok-containing flows, a Weighted Essentially Non-Oscillatory scheme is used to discretize the spatial flux derivatives. For high Reynolds number viscous flow, two turbulence models of the two-equation Menter's SST URANS model and a two-equation Detached Eddy Simulation are implemented. Some simple flow examples are given to assess the accuracy of the technique. Finally, a moving grid capability is demonstrated.

Numerical Simulation of Flows Past Two spheres aligned in the streamwise direction (유동 방향으로 놓여진 2개의 구를 지나는 유동에 대한 수치 해석적 연구)

  • Yoon, Dong-Hyeog;Yang, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1418-1423
    • /
    • 2004
  • A parametric study on the interactions of two spheres aligned in the streamwise direction is carried out using an immersed boundary method. The numerical results for the case of single sphere for the range of Re ${\leq}$ 300 are in good agreement with other authors' experimental and numerical results currently available. Then, our main investigation is focused on identifying the change of the vortical structures in the presence of a nearby sphere aligned in the streamwise direction for the range Re ${\leq}$ 220. It turns out that significant changes in physical characteristics are noticed depending on how close the two spheres are. In this paper, not only quantitative changes in the key physical parameters such as the force coefficients, but also qualitative changes in vortex structures are reported and analyzed.

  • PDF

A Study on Deterioration Evaluation Method by Condition Monitoring and Diagnosis for Aging Oil-immersed Power Transformers (유입식 변압기의 상태진단을 통한 노후도 평가 방법)

  • Chang, Jeong-Ho;Lee, Sung-Hun;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.297-305
    • /
    • 2014
  • Nowadays new water supply projects have been on the decline as the water-power constructions have saturated, which means that the existing power equipment have slowly aged and they require more efforts to maintain the system performance. An effective asset management method of power equipment has become a great necessity from both economical and technical aspects. To be balanced, the asset management should look into all three parts: management, engineering, and information. The purpose of this paper is to study a Risk-Based Maintenance (RBM) matrix method through the deterioration evaluation algorithm for an efficient reliability assessment of oil-immersed power transformers by considering both asset management and technical evaluation. Make use of this result, the equipment will be decided to be replace or repair otherwise on service.

IMMERSED BOUNDARY METHOD FOR COMPRESSIBLE VISCOUS FLOW AROUND MOVING BODIES (이동하는 물체 주위의 압축성 유동에 대한 가상경계법)

  • Cho, Yong;Chopra, Jogesh;Morris, Philip J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.200-208
    • /
    • 2007
  • A methodology for the simulation of compressible high Reynolds number flow over rigid and moving bodies on a structured Cartesian grid is described in this paper. The approach is based on a modified version of the Brinkman Penalization method. To avoid oscillations in the vicinity of the body and to simulate shcok-containing flows, a Weighted Essentially Non-Oscillatory scheme is used to discretize the spatial flux derivatives. For high Reynolds number viscous flow, two turbulence models of the two-equation Menter's SST URANS model and a two-equation Detached Eddy Simulation are implemented. Some simple flow examples are given to assess the accuracy of the technique. Finally, a moving grid capability is demonstrated.

  • PDF

A NUMERICAL STUDY ON A THIN FILM MANUFACTURING PROCESS USING THE CONTROL OF SURFACE ENERGY OF A MICRODROPLET (미세액적의 표면에너지 제어를 통한 박막 제조 공정에 대한 연구)

  • Suh, Y.;Son, G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.221-226
    • /
    • 2008
  • Numerical simulation is performed for microdroplet deposition on a pre-patterned micro-structure. The level-set method for tracking the liquid-gas interface is extended to treat the immersed (or irregular-shaped) solid surface. The no-slip condition at the fluid-solid interface as well as the matching conditions at the liquid-gas interface is accurately imposed by incorporating the ghost fluid approach based on a sharp-interface representation. The method is further extended to treat the contact angle condition at an immersed solid surface. The present computation of a patterning process using microdroplet ejection demonstrates that the multiphase characteristics between the liquid-gas-solid phases can be used to improve the patterning accuracy.

  • PDF