• 제목/요약/키워드: Imaging technologies

검색결과 285건 처리시간 0.025초

열화상 카메라를 이용한 통합 방역 시스템 개발 (Development of an Integrated Quarantine System Using Thermographic Cameras)

  • 정범진;이정임;서광덕;정경옥
    • 대한안전경영과학회지
    • /
    • 제24권1호
    • /
    • pp.31-38
    • /
    • 2022
  • The most common symptoms of COVID-19 are high fever, cough, headache, and fever. These symptoms may vary from person to person, but checking for "fever" is the government's most basic measure. To confirm this, many facilities use thermographic cameras. Since the previously developed thermographic camera measures body temperature one by one, it takes a lot of time to measure body temperature in places where many people enter and exit, such as multi-use facilities. In order to prevent malfunctions and errors and to prevent sensitive personal information collection, this research team attempted to develop a facial recognition thermographic camera. The purpose of this study is to compensate for the shortcomings of existing thermographic cameras with disaster safety IoT integrated solution products and to provide quarantine systems using advanced facial recognition technologies. In addition, the captured image information should be protected as personal sensitive information, and a recent leak to China occurred. In order to prevent another case of personal information leakage, it is urgent to develop a thermographic camera that reflects this part. The thermal imaging camera system based on facial recognition technology developed in this study received two patents and one application as of January 2022. In the COVID-19 infectious disease disaster, 'quarantine' is an essential element that must be done at the preventive stage. Therefore, we hope that this development will be useful in the quarantine management field.

양자점 기반 다중 바이오마커 검출법의 연구동향 (Recent Progress in Multiplexed Detection of Biomarkers Based on Quantum Dots)

  • 김예린;최유림;김봉근;나현빈
    • 공업화학
    • /
    • 제33권5호
    • /
    • pp.451-458
    • /
    • 2022
  • 반도체 양자점은 우수한 형광 특성을 가진 광학 탐침자로 생명-의학 영상화 기술 및 바이오센싱 분야에서 광범위하게 활용되고 있다. 양자점은 넓은 광흡수 에너지띠, 좁은 형광 에너지띠와 같은 광학 특성을 가지므로 서로 다른 형광 파장을 지닌 양자점을 조합해 다종의 신호를 생성할 수 있도록 구성하면 복수의 바이오마커를 동시에 검출할 수 있다. 본 총설에서는 이와 같은 다중 검출 분석법에서의 양자점 및 이에 기반한 양자점 나노비드가 가지는 장점과 활용 사례를 기술하고 다중 형광 바이오마커 검출법의 최근 개발 동향 및 개선사항을 요약 정리하였다. 특히 양자점을 활용한 형광-결합 면역흡착 분석법, 양자점 나노비드를 이용한 면역크로마토그래피 분석법 등 면역 분석법에서의 신호 전환 소재 디자인을 중심으로 최근의 연구 결과를 검토하였다. 정확성과 민감도가 우수한 다중 바이오마커 검출 기술이 확보된 데이터를 처리하고 해석하는 인공지능 알고리즘과 결합될 경우 질병의 조기 진단을 포함한 다양한 분야에 활용가능한 새로운 검출 플랫폼의 개발로 이어질 것으로 기대된다.

자동차 부품의 로봇 처리 시스템을 위한 3D 비전 구현 (3D Vision Implementation for Robotic Handling System of Automotive Parts)

  • 남지훈;양원옥;박수현;김남국;송철기;이호성
    • 한국기계가공학회지
    • /
    • 제21권4호
    • /
    • pp.60-69
    • /
    • 2022
  • To keep pace with Industry 4.0, it is imperative for companies to redesign their working environments by adopting robotic automation systems. Automation lines are facilitating the latest cutting-edge technologies, such as 3D vision and industrial robots, to outdo competitors by reducing costs. Considering the nature of the manufacturing industry, a time-saving workflow and smooth linkwork between processes is vital. At Dellics, without any additional new installation in the automation lines, only a few improvements to the working process could raise productivity. Three requirements are the development of gripping technology by utilizing a 3D vision system for the recognition of the material shape and location, research on lighting projectors to target long distances and high illumination, and testing of algorithms/software to improve measurement accuracy and identify products. With some of the functional requisites mentioned above, improved robotic automation systems should provide an improved working environment to maximize overall production efficiency. In this article, the ways in which such a system can become the groundwork for establishing an unmanned working infrastructure are discussed.

팬데믹 시대의 패션쇼의 디지털화 - 패션 필름과 패션 게이미피케이션을 중심으로 - (Digitalization of Fashion Shows in the Pandemic Era - A Focus on Fashion Films and Fashion Gamification -)

  • 강수정;전재훈
    • 한국의류산업학회지
    • /
    • 제24권1호
    • /
    • pp.29-41
    • /
    • 2022
  • With the outbreak of the COVID-19 pandemic, global fashion brands have been hosting online fashion shows instead of offline ones. In light of the current pandemic scenario, this research conducted a study on digital fashion shows held online, specifically focusing on two types of shows: fashion films and games. This study examined the characteristics of changes in digital fashion shows as well as their limitations. The case studies analyzed fashion shows from January 2020 to July 2021, with a focus on the 2021 S/S and 2021 F/W seasons, and 26 fashion shows from 23 brands. The results of this study were as follows: First, digital fashion shows transcended physical limitations through virtualization and non-face-to-face communication, breaking free of the limits of space and time in reality. Second, the entertainment role of fashion shows was strengthened. However, online fashion shows had limitations as they lacked a sense of reality and distracted viewers' attention from fashion products. This study has practical implications as it proposes a path for the development of digitalized fashion shows by addressing its current limitations. Overcoming these shortcomings, post-pandemic fashion shows would be more diverse, flexible, and creative. Consequently, following the pandemic period, we look forward to new types of fashion shows using digital imaging technologies.

Past and Future Epidemiological Perspectives and Integrated Management of Rice Bakanae in Korea

  • Soobin, Shin;Hyunjoo, Ryu;Yoon-Ju, Yoon;Jin-Yong, Jung;Gudam, Kwon;Nahyun, Lee;Na Hee, Kim;Rowoon, Lee;Jiseon, Oh;Minju, Baek;Yoon Soo, Choi;Jungho, Lee;Kwang-Hyung, Kim
    • The Plant Pathology Journal
    • /
    • 제39권1호
    • /
    • pp.1-20
    • /
    • 2023
  • In the past, rice bakanae was considered an endemic disease that did not cause significant losses in Korea; however, the disease has recently become a serious threat due to climate change, changes in farming practices, and the emergence of fungicide-resistant strains. Since the bakanae outbreak in 2006, its incidence has gradually decreased due to the application of effective control measures such as hot water immersion methods and seed disinfectants. However, in 2013, a marked increase in bakanae incidence was observed, causing problems for rice farmers. Therefore, in this review, we present the potential risks from climate change based on an epidemiological understanding of the pathogen, host plant, and environment, which are the key elements influencing the incidence of bakanae. In addition, disease management options to reduce the disease pressure of bakanae below the economic threshold level are investigated, with a specific focus on resistant varieties, as well as chemical, biological, cultural, and physical control methods. Lastly, as more effective countermeasures to bakanae, we propose an integrated disease management option that combines different control methods, including advanced imaging technologies such as remote sensing. In this review, we revisit and examine bakanae, a traditional seed-borne fungal disease that has not gained considerable attention in the agricultural history of Korea. Based on the understanding of the present significance and anticipated risks of the disease, the findings of this study are expected to provide useful information for the establishment of an effective response strategy to bakanae in the era of climate change.

A Novel RGB Channel Assimilation for Hyperspectral Image Classification using 3D-Convolutional Neural Network with Bi-Long Short-Term Memory

  • M. Preethi;C. Velayutham;S. Arumugaperumal
    • International Journal of Computer Science & Network Security
    • /
    • 제23권3호
    • /
    • pp.177-186
    • /
    • 2023
  • Hyperspectral imaging technology is one of the most efficient and fast-growing technologies in recent years. Hyperspectral image (HSI) comprises contiguous spectral bands for every pixel that is used to detect the object with significant accuracy and details. HSI contains high dimensionality of spectral information which is not easy to classify every pixel. To confront the problem, we propose a novel RGB channel Assimilation for classification methods. The color features are extracted by using chromaticity computation. Additionally, this work discusses the classification of hyperspectral image based on Domain Transform Interpolated Convolution Filter (DTICF) and 3D-CNN with Bi-directional-Long Short Term Memory (Bi-LSTM). There are three steps for the proposed techniques: First, HSI data is converted to RGB images with spatial features. Before using the DTICF, the RGB images of HSI and patch of the input image from raw HSI are integrated. Afterward, the pair features of spectral and spatial are excerpted using DTICF from integrated HSI. Those obtained spatial and spectral features are finally given into the designed 3D-CNN with Bi-LSTM framework. In the second step, the excerpted color features are classified by 2D-CNN. The probabilistic classification map of 3D-CNN-Bi-LSTM, and 2D-CNN are fused. In the last step, additionally, Markov Random Field (MRF) is utilized for improving the fused probabilistic classification map efficiently. Based on the experimental results, two different hyperspectral images prove that novel RGB channel assimilation of DTICF-3D-CNN-Bi-LSTM approach is more important and provides good classification results compared to other classification approaches.

The radiation shielding competence and imaging spectroscopic based studies of Iron ore region of Kozhikode district, Kerala

  • S. Arivazhagan;K.A. Naseer;K.A. Mahmoud;S.A. Bassam;P.N. Naseef Mohammed;N.K. Libeesh;A.S. Sachana;M.I. Sayyed;Mohammed S. Alqahtani;E. El Shiekh;Mayeen Uddin Khandaker
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2380-2387
    • /
    • 2023
  • Hyperspectral data and its ability to explore the minerals and their associated rocks have a remarkable application in mineral exploration and lithological characterization. The present study aims to explore the radiation shielding aspects of the iron ore in Kerala with the aid of the Hyperion hyperspectral dataset. The reflectance-spectra obtained from the laboratory conditions as well as from the image show various absorptions. The results from the spectra are validated with geochemical data and GPS points. The Monte Carlo simulation employed to evaluate the radiation shielding ability. Raising the oxygen ions caused a noteworthy decrease in the µ values of the studied rocks which is accompanied by an increase in Δ0.5 and Δeq values. The Δ0.5 and Δeq values increased by factors of approximately 77 % with raising the oxygen ions between 44.32 and 47.57 wt.%. The µ values varies with the oxygen concentrations, where the µ values decreased from 2.531 to 0.925 cm-1 (at 0.059 MeV), from 0.381to 0.215 cm-1 (at 0.662 MeV), and from 0.279 to 0.158 cm-1 (at 1.25 MeV) with raising the oxygen ions from 44.32 to 47.43 wt.%.

가스분무로 제조된 NdFeB 합금분말의 강소성변형을 통한 결정립 미세화 및 이방성 제어 (Control of Grain Refinement and Anisotropy of NdFeB Alloy Powder by Severe Plastic Deformation Fabricated by the Gas Atomization Process)

  • 조주영;박상민;자비드 후세인;송명석;김택수
    • 소성∙가공
    • /
    • 제31권3호
    • /
    • pp.124-128
    • /
    • 2022
  • NdFeB magnets have been positioned as the core materials in advanced technologies such as MRI (magnetic resonance imaging), FA (factory automation system), robot, motors, and so on based on the highest magnetic properties. To effectively improve the refined microstructure, the plastic deformation has been known as the good alternatives by the recrystallization. However, it has been regarded as being impossible because of the few slip systems in the RE-Fe-B magnets at room temperature. The purpose of this study was to investigate the possibility of control of grain refinement and magnetic anisotropy of NdFeB alloy powder by the severe plastic deformation. The NdFeB magnet powder was fabricated by gas atomization process, and the powder was pre-compacted at high temperature. The pre-compacted billets were deformed by HPT (high pressure torsion), and then the deformed billets were observed microstructure and magnetic properties. After the HPT process at room temperature, the grain size decreased with increasing because of the melted Nd-rich phase, and the anisotropy of Nd2Fe14B phase was formed after the HPT process.

운전 중 EEG 측정을 위한 생체의료기기의 기술 및 연구동향 분석 (Analysis of Technology and Research Trends in Biomedical Devices for Measuring EEG during Driving)

  • 이기현;정영진
    • 한국방사선학회논문지
    • /
    • 제17권7호
    • /
    • pp.1179-1187
    • /
    • 2023
  • 최신 이동수단 발달과 관련하여 다양한 생체 신호 및 의료영상 측정용 의료기술 개발이 활발히 이루어 지고 있다. 특히, 인지/신경과학 분야에서 뇌파(electroencephalography, EEG) 측정의 중요성과 이동 중 차량에서의 정확한 뇌파 측정기술 개발은 매우 도전적인 분야이다. 본 연구에서는, 운전 중 뇌파를 이용한 기술에 대해 광범위하게 조사하고, 기술 연구의 동향을 분석하고자 하였다. 이를 위해, Scopus 데이터베이스를 활용하여 2000년 이후 진행된 뇌파 관련 연구를 탐색하였으며, 약 40여편의 논문을 선정하였다. 이를 통해 신호처리 기술, EEG 측정 디바이스 개발, 차량 내 운전자 상태 모니터링 기술의 현재 동향과 미래 방향을 조명하였다. 또한, 이를 위한 초소형 32채널 뇌파 측정 시스템을 설계해 보았으며, 간단히 이를 구현하여 뇌파 신호를 측정 분석함으로써 검토해 보았다. 본 연구는 운전 중 생체신호 측정 및 분석 기술이 자율주행 시대에 맞추어 운전자 케어와 건강 모니터링에 기여할 것으로 기대한다.

SWIR 영역에서 활용 가능한 Silver Sulfide의 다양한 합성법 (Synthesis Methods of Silver Sulfide for SWIR Region Applications)

  • 정윤혜;김기환
    • 한국전기전자재료학회논문지
    • /
    • 제37권4호
    • /
    • pp.374-381
    • /
    • 2024
  • 이 논문은 단파 길이 적외선(SWIR) 영역에서의 활용을 중점적으로 다루며, 실버 황화물(Ag2S) 나노 구조의 합성과 광학적 특성에 대해 제시한다. SWIR 영역은 생체 조직에 미치는 손상이 감소하고 광학적 투명성이 향상되는 등의 장점을 제공하여 다양한 분야에서 활용되고 있다. 연구는 세 가지 다양한 합성 방법을 소개하며, 각각의 방법을 통해 다양한 광학적 특성을 갖는 나노 입자를 얻을 수 있음을 보여준다. 이러한 연구 결과는 Ag2S 나노 입자의 크기와 리간드를 조절함으로써 감지, 이미징 및 기타 응용 분야에서의 맞춤형 솔루션을 제공하는 가능성을 열어 놓는다. 이 논문은 SWIR 영역에서 활용 가능한 Ag2S에 대한 새로운 통찰력을 제공하며, 이를 통해 미래 기술의 발전을 촉진할 것으로 기대된다.