• 제목/요약/키워드: Imaging spectroscopy

검색결과 269건 처리시간 0.026초

Photoelectron Imaging Spectroscopy for (2+1) Resonance-Enhanced Multiphoton Ionization of Atomic Bromine

  • Kim, Yong-Shin;Jung, Young-Jae;Kang, Wee-Kyung;Jung, Kyung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권2호
    • /
    • pp.189-194
    • /
    • 2002
  • Two-photon resonant third photon ionization of atomic bromine $(4p^5\;^2P_{3/2}\;and\;^2P_{1/2})$ has been studied using a photoelectron imaging spectroscopy in the wavelength region 250 - 278 nm. The technique has yielded simultaneously both relative branching ratios to the three levels of $Br^+(^3P_2,\;^3P_{0.1}\;and^1D_2)$ with $4p^4$ configuration and the angular distributions of outgoing photoelectrons. The product branching ratios reveal a strong propensity to populate particular levels in many cases. Several pathways have been documented for selective formation of $Br^+(^3P_2)$ and $Br^+(^3P_{0.1})$ ions. In general, the final ion level distributions are dominated by the preservation of the ion core configuration of a resonant excited state. Some deviations from this simple picture are discussed in terms of the configuration interaction of resonant states and the autoionization in the continuum. The photoelectron angular distributions are qualitatively similar for all transitions, with a positive $A_2$ anisotropy coefficient of 1.0-2.0 and negligible $A_4$ in most cases, which suggests that the angular distribution is mainly determined by the single-photon ionization process of a resonant excited state induced from the third photon absorption.

Application of Functional Near-Infrared Spectroscopy to the Study of Brain Function in Humans and Animal Models

  • Kim, Hak Yeong;Seo, Kain;Jeon, Hong Jin;Lee, Unjoo;Lee, Hyosang
    • Molecules and Cells
    • /
    • 제40권8호
    • /
    • pp.523-532
    • /
    • 2017
  • Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical imaging technique that indirectly assesses neuronal activity by measuring changes in oxygenated and deoxygenated hemoglobin in tissues using near-infrared light. fNIRS has been used not only to investigate cortical activity in healthy human subjects and animals but also to reveal abnormalities in brain function in patients suffering from neurological and psychiatric disorders and in animals that exhibit disease conditions. Because of its safety, quietness, resistance to motion artifacts, and portability, fNIRS has become a tool to complement conventional imaging techniques in measuring hemodynamic responses while a subject performs diverse cognitive and behavioral tasks in test settings that are more ecologically relevant and involve social interaction. In this review, we introduce the basic principles of fNIRS and discuss the application of this technique in human and animal studies.

고지방식이 유도성 지방간 쥐 모델에서 간의 자기공명분광 분석을 이용한 지질 양성자 조성 변화 연구 (The Study of Lipid Proton Composition Change in a Rat Model of High Fat Diet Induced Fatty Liver by Magnetic Resonance Spectroscopy Analysis)

  • 김상혁;유승만
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제44권4호
    • /
    • pp.315-325
    • /
    • 2021
  • The purpose of this study is to investigate the changes in lipid proton (LP) composition according to the induced obese fatty liver and to use it as basic data for treatment and diagnosis of fatty liver in the future. The phantom study was conducted to identify differences between STEAM and PRESS Pulse sequences in LP concentration. A high-fat diet (60%) was administered to eight Sprague-Dawley rats to induce obesity and fatty liver disease. Baseline magnetic resonance imaging /spectroscopy data were obtained prior to the introduction of high-fat diet, and data acquisition experiments were performed after eight weeks using procedures identical to those used for baseline studies. The six lipid proton metabolites were calculated using LCModel software. The correlation between the fat percentage and each LP, revealed that the methylene protons at 1.3 ppm showed the highest positive correlation. The α-methylene protons to carboxyl and diallylic protons showed negative correlation with fat percentage. The methylene proton showed the highest increase in the LP; however, it constituted only 71.86% of the total LP concentration. The methylene proton plays a leading role in fat accumulation in liver parenchyma.

fMRI와 TRS와 EEG 를 이용한 뇌파분석을 통한 사람의 감정 인식 (Brain-wave Analysis using fMRI, TRS and EEG for Human Emotion Recognition)

  • 김호덕;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.7-10
    • /
    • 2007
  • 많은 과학자들은 인간의 사고를 functional Magnetic Resonance Imaging (fMRI), Time Resolved Spectroscopy(TRS), Electroencephalography(EEG)등을 이용해서 두뇌 활동 영역을 연구하고 있다. 주로 의학 분야와 심리학의 영역에서 두뇌의 활동을 연구하여 간질이나 발작을 알아내고 거짓말 탐지 분야에서도 사용된다. 본 논문에서는 사람의 두뇌활동을 측정하여 인간의 감정을 인식하는 연구에 중점을 두었다. 특히 fMRI와 TRS 그리고 EEG를 이용해서 사람의 두뇌활동을 측정하는 연구를 하였다. 많은 연구자들이 한 가지 측정 장치만을 사용하여서 측정하거나 fMRI와 EEG를 동시에 측정하는 연구를 진행하고 있다. 현재에는 단순히 두뇌의 활동을 측정하거나 측정시 발생하는 잡음들을 제거하는 연구들에 중점을 두고 진행되고 있다. 본 연구에서는 fMRI와 TRS를 동시에 측정하여 얻은 두뇌 활동 데이터를 가지고 감정에 따른 활동영역의 EEG신호를 측정하였다. EEG 신호분석에 있어서 기존의 뇌파만을 가지고 특정을 찾아내는 것을 넘어서 각각의 채널에서 기록되는 뇌파의 파형을 주파수에 따라서 분류하고 정확한 측정을 위해 낮은 주파수를 제거하고 연구자가 필요한 부분의 뇌파를 분석하였다.

  • PDF

In Situ Single Cell Monitoring by Isocyanide-Functionalized Ag and Au Nanoprobe-Based Raman Spectroscopy

  • Lee, So-Yeong;Jang, Soo-Hwa;Cho, Myung-Haing;Kim, Young-Min;Cho, Keun-Chang;Ryu, Pan Dong;Gong, Myoung-Seon;Joo, Sang-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권9호
    • /
    • pp.904-910
    • /
    • 2009
  • The development of effective cellular imaging requires a specific labeling method for targeting, tracking, and monitoring cellular/molecular events in the living organism. For this purpose, we studied the cellular uptake of isocyanide-functionalized silver and gold nanoparticles by surface-enhanced Raman scattering (SERS). Inside a single mammalian cell, we could monitor the intracellular behavior of such nanoparticles by measuring the SERS spectra. The NC stretching band appeared clearly at ${\sim}2,100cm^{-1}$ in the well-isolated spectral region from many organic constituents between 300 and 1,700 or 2,800 and $3,600cm^{-1}$. The SERS marker band at ${\sim}2,100cm^{-1}$ could be used to judge the location of the isocyanide-functionalized nanoparticles inside the cell without much spectral interference from other cellular constituents. Our results demonstrate that isocyanide-modified silver or gold nanoparticle-based SERS may have high potential for monitoring and imaging the biological processes at the single cell level.

Imaging Cancer Metabolism

  • Momcilovic, Milica;Shackelford, David B.
    • Biomolecules & Therapeutics
    • /
    • 제26권1호
    • /
    • pp.81-92
    • /
    • 2018
  • It is widely accepted that altered metabolism contributes to cancer growth and has been described as a hallmark of cancer. Our view and understanding of cancer metabolism has expanded at a rapid pace, however, there remains a need to study metabolic dependencies of human cancer in vivo. Recent studies have sought to utilize multi-modality imaging (MMI) techniques in order to build a more detailed and comprehensive understanding of cancer metabolism. MMI combines several in vivo techniques that can provide complementary information related to cancer metabolism. We describe several non-invasive imaging techniques that provide both anatomical and functional information related to tumor metabolism. These imaging modalities include: positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS) that uses hyperpolarized probes and optical imaging utilizing bioluminescence and quantification of light emitted. We describe how these imaging modalities can be combined with mass spectrometry and quantitative immunochemistry to obtain more complete picture of cancer metabolism. In vivo studies of tumor metabolism are emerging in the field and represent an important component to our understanding of how metabolism shapes and defines cancer initiation, progression and response to treatment. In this review we describe in vivo based studies of cancer metabolism that have taken advantage of MMI in both pre-clinical and clinical studies. MMI promises to advance our understanding of cancer metabolism in both basic research and clinical settings with the ultimate goal of improving detection, diagnosis and treatment of cancer patients.

A Review of the Applications of Spectroscopy for the Detection of Microbial Contaminations and Defects in Agro Foods

  • Kandpal, Lalit Mohan;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • 제39권3호
    • /
    • pp.215-226
    • /
    • 2014
  • Recently, spectroscopy has emerged as a potential tool for quality evaluation of numerous food and agricultural products because it provides information regarding both spectral distribution and image features of the sample (i.e., hyperspectral imaging). Spectroscopic techniques reveal hidden information regarding the sample and do so in a non-destructive manner. This review describes the various approaches of spectroscopic modalities, especially hyperspectroscopy and vibrational spectroscopies (i.e., Raman spectroscopy and Fourier transform near infrared spectroscopy) combined with chemometrics for the non-destructive assessment of contaminations and defects in agro-food products.

Solid Immersion Lens Microscope for Spectroscopy of Nanostructure Materials

  • Yim, Sang-Youp;Kim, Joon-Heon;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • 제15권1호
    • /
    • pp.78-81
    • /
    • 2011
  • We demonstrate a high-spatial-resolution imaging and spectroscopy tool using a solid immersion lens (SIL), a hemispherical lens made of high refractive index glass (n ~2). Photoluminescence (PL) images of single CdSe nanocrystals confirm a numerical aperture enhancement factor of ~2, close to the refractive index of the SIL. In particular, a bare-eye observation of PL signals emitted by single nanocrystals with ${\sim}10\;{\mu}m^{-2}$ densities was possible over an ${\sim}30\;{\mu}m$ diameter region. In addition, the PL spectra of single CdSe nanocrystals were successfully measured at room temperature. Thus, this SIL microscope ensures a simple but powerful method for nanostructure spectroscopy.

Magnetic Resonance Spectroscopy Findings in Perro de Presa Canario Dogs with Spongy Degeneration of the Central Nervous System

  • Hong, Sae-Byel;Lee, In;Song, Yu-Mi;Lee, Young-Won;Choi, Ho-Jung
    • 한국임상수의학회지
    • /
    • 제38권2호
    • /
    • pp.89-93
    • /
    • 2021
  • 2-Month-old, three related Perro de Presa Canario dogs were evaluated for similar neurological symptoms like circling, head pressing, depressed mental status, hypermetria, and vocalization. On magnetic resonance imaging (MRI) of the brain, there were large, bilaterally symmetrical lesions with involvement of thalamus, and brainstem that were T2- and FLAIR-hyperintense and T1-iso/hypointense. There was no inclusion of cerebellum. Single-voxel spectroscopy acquisition was located in the thalamus where abnormalities were found in MR images. The results of magnetic resonance spectroscopy (MRS) showed markedly decreased N-acetylaspartic acid value. Euthanasia was performed and lesions consistent with the canine spongy degeneration. Alteration in metabolites in the brain can be determined by MRS, which helps in diagnosing degeneration/leukodystrophy of the central nervous system in dogs.

fMRI와 TRS와 EEG를 이용한 뇌파분석을 통한 사람의 감정인식 (Brain-wave Analysis using fMRI, TRS and EEG for Human Emotion Recognition)

  • 김호덕;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제17권6호
    • /
    • pp.832-837
    • /
    • 2007
  • 많은 연구자들은 인간의 사고를 functional Magnetic Resonance Imaging (fMRI), Time Resolved Spectroscopy(TRS), Electroencephalography(EEG)등을 이용해서 두뇌 활동 영역을 연구하고 있다. 주로 의학 분야와 심리학의 영역에서 두뇌의 활동을 연구하여 간질이나 발작을 알아내고 거짓말 탐지 분야에서도 사용된다. 본 논문에서는 사람의 두뇌활동을 측정하여 인간의 감정을 인식하는 연구에 중점을 두었다. 특히, fMRI와 TRS 그리고 EEG를 이용해서 사람의 두뇌 활동을 측정하는 연구를 하였다. 많은 연구자들이 한 가지 측정 장치만을 사용하여서 측정하거나 fMRI와 EEG를 동시에 측정하는 연구를 진행하고 있다. 현재에는 단순히 두뇌의 활동을 측정하거나 측정 시 발생하는 잡음들을 제거하는 연구들에 중점을 두고 진행되고 있다. 본 연구에서는 fMRI와 TRS를 동시에 측정하여 얻은 두뇌 활동 데이터를 가지고 감정에 따른 활동영역의 EEG 신호를 측정하였다. EEG 신호분석에 있어서 기존의 뇌파만을 가지고 특징을 찾아내는 것을 넘어서 각각의 채널에서 기록되는 뇌파의 파형을 주파수에 따라서 분류하고 정확한 측정을 위해 낮은 주파수를 제거하고 연구자가 필요한 부분의 뇌파를 분석하였다.