• Title/Summary/Keyword: Imaging plate

Search Result 232, Processing Time 0.021 seconds

Imaging Plate Technique for the Electron Diffraction Study of a Radiation-sensitive Material under Electron Beam (전자 빔 조사 민감 물질의 전자회절분석을 위한 Imaging Plate 기술)

  • Kim, Young-Min;Kim, Yang-Soo;Kim, Jin-Gyu;Lee, Jeong-Yong;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.38 no.3
    • /
    • pp.185-193
    • /
    • 2008
  • An experimental comparison of the detection properties between imaging plate and film for recording the electron diffraction pattern was carried out on a radiation-sensitive material, an aluminum trihydroxide(gibbsite, ${\gamma}-Al(OH)_3$), through the electron beam irradiation. Because the imaging plate has a wide dynamic range sufficient for recording extremely low- and high-electron intensities, the range of spatial frequency for the diffraction pattern acquired by the imaging plate was extended to two times larger than the range by the film, especially at a low electron dose condition(${\leq}0.1\;e^-/{\mu}m^2$). It is also demonstrated that the imaging plate showed better resolving power for discriminating fine intensity levels even in saturated transmitted beam. Hence, in the respect of investigating the structures of radiation-sensitive materials and cryo-biological specimens, our experimental demonstrations suggest that the imaging plate technique may be a good choice for those studies, which have to use an extremely low electron intensity for recording.

System Development and Fundamental Study of CCD Camera Based Electronic Portal Imaging Device (CCD Camera 기반 실시간 방사선치료조사면 검증 시스템 개발 및 화질개선을 위한 기초연구)

  • Jang, Gi-Won;Park, Ji-Koon;Lee, Dong-Gil;Kim, Jin-Yeong;Nam, Sang-Hee;Ha, Sung-Whan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.380-383
    • /
    • 2003
  • The purpose of this study is to develope prototype EPID system and improve image quality of radiation therapy field imaging system using CCD camera. For this research we used Linac(Clinac 4/100), Copper metal plate, $Gd_2O_2S_2$ phosphor and CCD camera(Photronic). In this study we find best thickness of buil-up metal plate and acquired projection image of humanoid head phantom. Also we enhanced raw image data using superposition and histogram stretching method. Through the thickness optimized of metal plate and image processing, we confirmed of an improved image quality of an EPID system using CCD camera. As result, highest quality image was acquired at 1mm thickness of Copper metal plate and improved image quality by image processing methods.

  • PDF

Preparation of the X-Ray Imaging Plate Using Thermoluminescent Phosphor (열형광체를 이용한 X선 영상판의 제작)

  • Lee, Won-Jin;Lee, Dong-Myung
    • Journal of radiological science and technology
    • /
    • v.14 no.1
    • /
    • pp.49-60
    • /
    • 1991
  • Thermoluminescent phosphors, which are now being used widely in radiation dosimetry, have an excellent sensitivity to ionizing radiation. In this study, thermoluminescent phosphors of $CaSO_4$ : Mn, $CaSO_4$ : Dy and $CaSO_4$ : Tm are prepared and their physical properties are investigated by measuring the trapping parameters and their luminescent spectra. By considering the sensitivity to X-ray and fading characteristics, $CaSO_4$ : Dy is most adequate to imaging plate. The imaging plate are prepared by coating the $CaSO_4$ : Dy powder on the Al substrate and its dose dependence is linear within the range of 40 mGy-20 Gy X-ray. The sensitivity of imaging plate depends linearly on the thickness of coated phosphor layer up to $35\;mg/cm^2$ and is independent on the grain size of the phosphor in the range of $70{\sim}250\;{\mu}m$. By photographing the imaging plate, X-ray images of the test object are obtained and better than those of X-ray films.

  • PDF

Accurate Interpretation of Electron Diffraction Data Acquired by Imaging Plates (Imaging Plate에 기록된 전자회절자료의 해석)

  • Kim, Young-Min;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.33 no.3
    • /
    • pp.195-204
    • /
    • 2003
  • The Experimental calibration method has been investigated to correct d-spacing estimation and to identify phases in the electron diffraction data acquired by imaging plates. When the diffraction data from the imaging plate was corrected by the d-spacing calibration method with the radial intensity distribution plotting in this experiment, The accuracy of d-spacing estimation was significantly increased in errors of about 0.5%. The experimental calibration equation followed up the first order exponential decay function was derived from the trace of d-spacing deviation between the measured and the calculated values. It was applied to the analysis of d-spacing and the phase identification of the transitional phases formed from [001] gibbsite specimen by electron beam irradiation effect. In this case more accurate phase identification and d-spacing evaluation is possible for the transitional phases whose diffraction patterns are complicatedly superimposed. It is concluded that ${\chi}$-alumina, ${\gamma}$-alumina and ${\sigma}$-alumina are clearly identified as the major transitional phases formed from gibbsite by electron beam irradiation for 120 min.

Imaging Magnetic Flux Leakage based Steel Plate Damage for Steel Structure Diagnosis (강구조물 진단을 위한 누설자속 기반 강판 손상의 이미지화)

  • Kim, Hansun;Kim, Ju-Won;Yu, Byoungjoon;Kim, Wonkyu;Park, Seunghee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.129-136
    • /
    • 2019
  • In this study, the magnetic flux leakage technique was applied to diagnose steel plate damage, imaging technique was applied through those signals. Steel plate specimens with different thicknesses were prepared for the imaging the magnetic flux leakage signal, and 6 different depths of damage were artificially processed at the same locations on each specimen. The sensor head consist hall sensor and magnetization yoke was fabricated to magnetize the steel plate specimen and measure the magnetic flux leakage signal. In order to remove the noise and increase the resolution of the image in the signal collected from the hall sensor, various of signal processing was performed. P-P value was analyzed for each channel to analyze the magnetic flux leakage signals measured from each damaged part. Based on the above processed signals and analysis, it was converted into heatmap image. Through this, it was possible to identify the damage on the steel plate at glance by imaging magnetic flux leakage signal.

Feasibility Study of Diffusion Film for the Light Guide of Gamma Ray Imaging System

  • Cha, Hyemi;Min, Eungi;Lee, Kisung;Jung, Young-Jun;Lee, Hakjae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.124-128
    • /
    • 2017
  • A light guide improves the spatial resolution of a gamma ray imaging system by diffusing the scintillation light. Similarly, light diffusion film, which has been applied to flat-panel-display engineering, spreads the light from the light guide panel. In this study, we adopted light diffusion film for the light guide of a gamma ray imaging system, and evaluated its diffusion characteristics. We compared the light diffusion performance of the film to an ordinary acrylic plate. As a result, the diffusion film widely spreads scintillation light. As for the thickness of the light guide, we acquired more distinct images with three films overlapped than with an acrylic plate. We expect light diffusion film to be a promising candidate for light guides in gamma ray imaging systems.

Application of an imaging plate to relative dosimetry of clinical x-ray beams (Imaging Plate를 이용한 의료용 광자선의 선량측정)

  • 임상욱;여인환;김대용;안용찬;허승재;윤병수
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.117-122
    • /
    • 2000
  • The IP(imaging plate) has been widely used to measure the two-dimensional distribution of incident radiation since it has a high sensitivity, reusability, a wide dynamic range, a high position resolution. Particularly, the easiness of acquiring digitized image using IP poses a strong merit because recent trend of data handling prefers image digitization. In order to test its usefulness in photon beam dosimetry, we measured the off-axis ratio(OAR) on portal planes and percent depth dose(PDD) within a phantom using IP, and compared the results with the data based on EGS4 Monte Carlo particle transport code, ion-chambers, conventional films. For the measurement, we used 6 MV X-rays, various field sizes. As a result, IP showed significant deviation from ion-chamber measurement: a significant overresponse, 100% greater than that of ion-chamber measurement at deep part of the phantom. Filtration of low-energy scattered photons at deep part of the phantom using 0.5 mm thick lead sheets did improve the result, only to the unacceptable extent. However, portal dose measurement showed possibilities of If as a dosimeter by showing errors less than 5%, as compared with film measurement.

  • PDF

Lamb wave-based damage imaging method for damage detection of rectangular composite plates

  • Qiao, Pizhong;Fan, Wei
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.4
    • /
    • pp.411-425
    • /
    • 2014
  • A relatively low frequency Lamb wave-based damage identification method called damage imaging method for rectangular composite plate is presented. A damage index (DI) is generated from the delay matrix of the Lamb wave response signals, and it is used to indicate the location and approximate area of the damage. The viability of this method is demonstrated by analyzing the numerical and experimental Lamb wave response signals from rectangular composite plates. The technique only requires the response signals from the plate after damage, and it is capable of performing near real time damage identification. This study sheds some light on the application of Lamb wave-based damage detection algorithm for plate-type structures by using the relatively low frequency (e.g., in the neighborhood of 100 kHz, more suitable for the best capability of the existing fiber optic sensor interrogator system with the sampling frequency of 500 kHz) Lamb wave response and a reference-free damage detection technique.

Development of Ultrasonic Wave Propagation Imaging System

  • Chia, Chen-Ciang;Lee, Jung-Ryul;Kim, Jong-Heon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.283-292
    • /
    • 2009
  • Laser-based ultrasonic sensing requires the probe with fixed fecal length, but this requirement is not essential in laser-based ultrasonic generation. Based on this fact, we designed a pulsed laser-based ultrasonic wave propagation imaging (UWPI) system with a tilting mirror system for rapid scanning of target, and an in-line band-pass filtering capable of ultrasoaic mode selection. 1D-temporal averaging, 2D-spatial averaging, and 3D-data structure building algorithms were developed far clearer results allowing fur higher damage detectability. The imaging results on a flat stainless steel plate were presented in movie and snapshot formats which showed the propagation of ultrasound visible as a concentric wavefield emerging from the location of an ultrasonic sensor. A hole in the plate with a diameter of 1 mm was indicated by the scattering wavefields. The results showed that this robust UWPI system is independent of focal length and reference data requirements.

Impact Localization for a Composite Plate Using the Spatial Focusing Properties of Advanced Signal Processing Techniques

  • Jeong, Hyunjo;Cho, Sungjong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.703-710
    • /
    • 2012
  • A structural health monitoring technique for locating impact position in a composite plate is presented in this paper. The method employs a single sensor and spatial focusing properties of time reversal(TR) and inverse filtering(IF). We first examine the spatial focusing efficiency of both approaches at the impact position and its surroundings through impact experiments. The imaging results of impact localization show that the impact location can be accurately estimated in any position of the plate. Compared to existing techniques for locating impact or acoustic emission source, the proposed method has the benefits of using a single sensor and not requiring knowledge of anisotropic material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in other ultrasonic testing of plate-like structures.