• Title/Summary/Keyword: Imaging phantoms

Search Result 115, Processing Time 0.02 seconds

Development and Performance Evaluation of the First Model of 4D CT-Scanner

  • Endo, Masahiro;Mori, Shinichiro;Tsunoo, Takanori;Kandatsu, Susumu;Tanada, Shuji;Aradate, Hiroshi;Saito, Yasuo;Miyazaki, Hiroaki;Satoh, Kazumasa;Matsusita, Satoshi;Kusakabe, Masahiro
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.373-375
    • /
    • 2002
  • 4D CT is a dynamic volume imaging system of moving organs with an image quality comparable to conventional CT, and is realized with continuous and high-speed cone-beam CT. In order to realize 4D CT, we have developed a novel 2D detector on the basis of the present CT technology, and mounted it on the gantry frame of the state-of-the-art CT-scanner. In the present report we describe the design of the first model of 4D CT-scanner as well as the early results of performance test. The x-ray detector for the 4D CT-scanner is a discrete pixel detector in which pixel data are measured by an independent detector element. The numbers of elements are 912 (channels) ${\times}$ 256 (segments) and the element size is approximately 1mm ${\times}$ 1mm. Data sampling rate is 900views(frames)/sec, and dynamic range of A/D converter is 16bits. The rotation speed of the gantry is l.0sec/rotation. Data transfer system between rotating and stationary parts in the gantry consists of laser diode and photodiode pairs, and achieves net transfer speed of 5Gbps. Volume data of 512${\times}$512${\times}$256 voxels are reconstructed with FDK algorithm by parallel use of 128 microprocessors. Normal volunteers and several phantoms were scanned with the scanner to demonstrate high image quality.

  • PDF

Measurement of Prostate Phantom Volume Using Three-Dimensional Medical Imaging Modalities (3차원 의료영상진단기기를 이용한 가상 전립선 용적 측정)

  • Seoung, Youl-Hun;Joo, Yong-Hyun;Choe, Bo-Young
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.4
    • /
    • pp.285-291
    • /
    • 2010
  • Recently, advance on various modalities of diagnosing, prostate volume estimation became possible not only by the existing two-dimension medical images data but also by the three-dimensional medical images data. In this study, magnetic resonance image (MRI), computer tomography (CT) and ultrasound (US) were employed to evaluate prostate phantom volume measurements for estimation, comparison and analysis. For the prostate phantoms aimed at estimating the volume, total of 17 models were developed by using devils-tongue jelly and changing each of the 5ml of capacity from 20ml to 100ml. For the volume estimation through 2D US, the calculation of the diameter with C9-5Mhz transducer was conducted by ellipsoid formula. For the volume estimation through 3D US, the Qlab software (Philips Medical) was used to calculate the volume data estimated by 3D9-3Mhz transducer. Moreover, the images by 16 channels CT and 1.5 Tesla MRI were added by the method of continuous cross-section addition and each of imaginary prostate model's volume was yielded. In the statistical analysis for comparing the availability of volume estimation, the correlation coefficient (r) was more than 0.9 for all indicating that there were highly correlated, and there were not statistically significant difference between each of the correlation coefficient (p=0.001). Therefore, the estimation of prostate phantom volume using three-dimensional modalities of diagnosing was quite closed to the actual estimation.

Effect of the slice thickness and the size of region of interest on CT number (상층두께와 관심영역의 크기 변화가 CT 번호에 미치는 영향)

  • Lee Ji-Youn;Kim Kee-Deog;Park Chang-Seo
    • Imaging Science in Dentistry
    • /
    • v.31 no.2
    • /
    • pp.85-91
    • /
    • 2001
  • Purpose: To evaluate the effect of the slice thickness and the size of region of interest (ROI) on CT number using quantitative CT phantom Materials and Methods: The phantom containing 150 mg/cc, 75 mg/cc and 0 mg/cc calcium hydroxyapatite was scanned with 1, 3, 5 and 10 mm slice thicknesses by single energy quantitative computed tomography (QCT). CT numbers were measured on center position of the phantom. Shape of ROI was circular and sizes were 1, 3, 5, 11, 16, 21, 26 and 33 mm². ANOVA and Tukey's multiple comparison method were performed for statistical comparison of CT numbers according to different slice thicknesses. Coefficient of variation of CT number measured in each size of ROI was evaluated in same slice thickness. Results : CT numbers had statistically significant difference according to slice thicknesses (p<0.05). As the slice thickness increased, CT number also increased. As the density of phantom became lower and the size of ROI became smaller, the coefficient of variation of CT number increased. When the size of ROI was more than 11 mm² in 1 mm slice thickness, 5 mm² in 3 mm slice thickness and 3 mm² in 5 mm slice thickness, the coefficient of variation became consistent. In 10 mm slice thickness, the size of ROI had little effect on the coefficient of variation. Conclusion: CT number had variation according to the slice thickness and the size of ROI although the object was homogeneous. The slice thickness and the size of ROI are critical factors in precision of the CT number measurements.

  • PDF

Measurement of hard tissue density of head phantom based on the HU by using CBCT (콘빔형 전산화단층영상에서 HU에 의한 두경부 팬텀 경조직의 밀도 측정)

  • Kim, Moon-Sun;Kim, Jae-Duk;Kang, Dong-Wan
    • Imaging Science in Dentistry
    • /
    • v.39 no.3
    • /
    • pp.115-120
    • /
    • 2009
  • Purpose : The purpose of this study was to determine a conversion coefficient for Hounsfield Units(HU) to material density ($g\;cm^{-3}$) obtained from cone-beam computed tomography ($CBMercuRay^{TM}$) data and to measure the hard tissue density based on the Hounsfield scale on dental head phantom. Materials and Methods : CT Scanner Phantom (AAPM) equipped with CT Number Insert consists of five cylindrical pins of materials with different densities and teflon ring was scanned by using the $CBMercuRay^{TM}$ (Hitachi, Tokyo, Japan) volume scanner. The raw data were converted into DICOM format and the HU of different areas of CT number insert measured by using $CBWorks^{TM}$. Linear regression analysis and Student t-test were performed statistically. Results : There was no significant difference (P > 0.54) between real densities and measured densities. A linear regression was performed using the density, $\rho$($g\;cm^{-3}$), as the dependent variable in terms of the HU (H). The regression equation obtained was $\rho=0.00072H-0.01588$ with an $R^2$ value of 0.9968. Density values based on the Hounsfield scale was $1697.1{\pm}24.9\;HU$ in cortical bone, $526.5{\pm}44.4\;HU$ in trabecular bone, $2639.1{\pm}48.7\;HU$ in enamel, $1246.1{\pm}39.4\;HU$ in dentin of dental head phantom. Conclusion : CBCT provides an effective option for determination of material density expressed as Hounsfield Units.

  • PDF

Effect of Number of Measurement Points on Accuracy of Muscle T2 Calculations

  • Tawara, Noriyuki;Nishiyama, Atsushi
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.4
    • /
    • pp.207-214
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate the effect of the number of measurement points on the calculation of transverse relaxation time (T2) with a focus on muscle T2. Materials and Methods: This study assumed that muscle T2 was comprised of a single component. Two phantom types were measured, 1 each for long ("phantom") and short T2 ("polyvinyl alcohol gel"). Right calf muscle T2 measurements were conducted in 9 healthy male volunteers using multiple-spin-echo magnetic resonance imaging. For phantoms and muscle (medial gastrocnemius), 5 regions of interests were selected. All region of interest values were expressed as the mean ${\pm}$ standard deviation. The T2 effective signal-ratio characteristics were used as an index to evaluate the magnetic resonance image quality for the calculation of T2 from T2-weighted images. The T2 accuracy was evaluated to determine the T2 reproducibility and the goodness-of-fit from the probability Q. Results: For the phantom and polyvinyl alcohol gel, the standard deviation of the magnetic resonance image signal at each echo time was narrow and mono-exponential, which caused large variations in the muscle T2 decay curves. The T2 effective signal-ratio change varied with T2, with the greatest decreases apparent for a short T2. There were no significant differences in T2 reproducibility when > 3 measurement points were used. There were no significant differences in goodness-of-fit when > 6 measurement points were used. Although the measurement point evaluations were stable when > 3 measurement points were used, calculation of T2 using 4 measurement points had the highest accuracy according to the goodness-of-fit. Even if the number of measurement points was increased, there was little improvement in the probability Q. Conclusion: Four measurement points gave excellent reproducibility and goodness-of-fit when muscle T2 was considered mono-exponential.

Development of a Small Animal CT using a Linear Detector Array and Small-Scale Slip Rings

  • An Ung Hwan;Chun In Kon;Lee Sang Chul;Cho Min Hyoung;Lee Soo Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.1
    • /
    • pp.43-47
    • /
    • 2005
  • We have developed a small bore x-ray CT for small animal imaging with a linear x-ray detector array and small-scale slip rings. The linear x-ray detector array consists of 1024 elements of 400□m×400□m with a gadolinium oxysulfide (GOS) scintillator on top of them. To avoid use of expensive large diameter slip rings for projection data transmission from the X­ray detector to the image reconstruction system, we used the wireless LAN technology. The projection data are temporally stored in the data acquisition system residing on the rotating gantry during the scan and they are transmitted to the image reconstruction system after the scan. With the wireless LAN technology, we only needed to use small-scale slip rings to deliver the AC electric power to the X-ray generator and the power supply on the rotating gantry. The performances of the small animal CT system, such as SNR, contrast, and spatial resolution, have been evaluated through experiments using various phantoms. It has been experimentally found that the SNR is almost linearly proportional to the tube current and tube voltage, and the minimum resolvable contrast is less than 30 CT numbers at 40kVp/3.0㎃. The spatial resolution of the small animal CT system has been found to be about 0.9Ip/㎜. Postmortem images of a piglet is also presented.

Development of a new ball-type phantom for evaluation of the image layer of panoramic radiography

  • Yeom, Han-Gyeol;Kim, Jo-Eun;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.48 no.4
    • /
    • pp.255-259
    • /
    • 2018
  • Purpose: This study proposes a new ball-type phantom for evaluation of the image layer of panoramic radiography. Materials and Methods: The arch shape of an acrylic resin phantom was derived from average data on the lower dental arch in Korean adult males. Metal balls with a 2-mm diameter were placed along the center line of the phantom at a 4-mm mesiodistal interval. Additional metal balls were placed along the 22 arch-shaped lines that ran parallel to the center line at 2-mm buccolingual intervals. The height of each ball in the horizontal plane was spaced by 2.5 mm, and consequently, the balls appeared oblique when viewed from the side. The resulting phantom was named the Panorama phantom. The distortion rate of the balls in the acquired image was measured by automatically calculating the difference between the vertical and horizontal length using $MATLAB^{(R)}$. Image layer boundaries were obtained by applying various distortion rate thresholds. Results: Most areas containing metal balls (91.5%) were included in the image layer with a 50% distortion rate threshold. When a 5% distortion rate threshold was applied, the image layer was formed with a small buccolingual width along the arch-shaped center line. However, it was medially located in the temporomandibular joint region. Conclusion: The Panorama phantom could be used to evaluate the image layer of panoramic radiography, including all mesiodistal areas with large buccolingual width.

A comparison of subtracted images from dental subtraction programs (디지털공제프로그램간의 디지털공제영상 비교)

  • Han Won-Jeong
    • Imaging Science in Dentistry
    • /
    • v.32 no.3
    • /
    • pp.147-151
    • /
    • 2002
  • Purpose: To compare the standard deviation of gray levels on digital subtracted images obtained by different dental subtraction programs. Materials and Methods: Paired periapical films were taken at the lower premolar and molar areas of the phantoms involving human mandible. The bite registration group used Rinn XCP equipment and bite registration material, based on polyvinyl siloxane, for standardization. The no bite registration group used only Rinn XCP equipment. The periapical film images were digitized at 1200 dpi resolution and 256 gray levels by a flat bed scanner with transparency unit. Dental digital subtraction programs used for this study were Subtractor (Biomedisys Co., Korea) and Emago (Oral Diagnostic Systems, The Netherlands). To measure the similarities between the subtracted images, the standard deviations of the gray levels were obtained using a histogram of subtracted images, which were then analyzed statistically. Results: Subtracted images obtained by using the Emago program without manual selection of corresponding points showed the lowest standard deviation of gray levels (p<0.01). And the standard deviation of gray levels was lower in subtracted images in the group of a bite registration than in the group of no use of bite registration (p < 0.01). Conclusion: Digital radiographic subtraction without manual selection of reference points was found to be a convenient and superior method.

  • PDF

The Development of Popular type Domestic Superconducting MRI Magnet with Middle Magnetic Field Range (중자장급 보급형 국산 초전도 MRI 마그네트 개발)

  • Bae, J.H.;Ko, R.K.;Sim, K.D.;Jin, H.B.;Cho, J.W.;Lee, E.Y.;Kwon, Y.K.;Ryu, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.22-25
    • /
    • 2001
  • The research results on the superconducting magnet for whole body MRI are presented. The magnet consists of main coil with 6 solenoid coils, shielding coil with 2 solenoid coils and 6 sets of cryogenic shim coil. The ferromagnetic shim assembly is installed on the inside wall of the room temperature bore for shimming inhomogeneous field components generated due to manufacturing tolerances, installation misalignments and external ferromagnetic materials near the magnet. Also, the magnet is enclosed with the horizontal type cryostat with 80cm room temperature bore to keep the magnet under the operating temperature. The magnetic field distributions within the imaging volume were measured by the NMR field mapping system. Through the test, the central field of magnet was 1.5 Tesla and the field homogeneity of 9.3 ppm has been obtained on 40cm DSV(the diameter of spherical volume) and using this magnet, comparatively good images for human body, fruits and water phantoms have been achieved.

  • PDF

A Study on the Material Decomposition of Dual-Energy Iodine Image by Using the Multilayer X-ray Detector (다층구조 엑스선 검출기를 이용한 이중에너지 조영제 영상의 물질 구분에 관한 연구)

  • Kim, Jun-Woo
    • Journal of radiological science and technology
    • /
    • v.44 no.5
    • /
    • pp.465-471
    • /
    • 2021
  • Dual-energy X-ray imaging (DEI) techniques can provide X-ray images that a certain material is suppressed or emphasized by combining two X-ray images obtained from two different x-ray spectrum. In this paper, a single-shot DEI, which uses stacked two detectors (i.e., multilayer detector), is proposed to reduce the patient dose and increase throughput in angiography. The polymethyl methacrylate (PMMA) and aluminum (Al) were selected as two basis materials for material decomposition, and material-specific images are reconstructed as a vector combination of these two materials. We investigate the contrast and noise performance of material-decomposed images using iodine phantoms with various concentrations and diameters. The single-shot DEI shows comparable performances to the conventional dual-shot DEI. In particular, the single-shot DEI shows edge enhancement in material-decomposed images due to the different spatial-resolution characteristics of upper and lower detectors. This study could be useful for designing the multilayer detector including scintillators and energy-separation filter for angiography purposes.