• Title/Summary/Keyword: Imaging optical system

Search Result 588, Processing Time 0.021 seconds

Nano Bio Imaging for NT and BT

  • Moon, DaeWon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.51.2-51.2
    • /
    • 2015
  • Understanding interfacial phenomena has been one of the main research issues not only in semiconductors but only in life sciences. I have been trying to meet the atomic scale surface and interface analysis challenges from semiconductor industries and furthermore to extend the application scope to biomedical areas. Optical imaing has been most widely and successfully used for biomedical imaging but complementary ion beam imaging techniques based on mass spectrometry and ion scattering can provide more detailed molecular specific and nanoscale information In this presentation, I will review the 27 years history of medium energy ion scattering (MEIS) development at KRISS and DGIST for nanoanalysis. A electrostatic MEIS system constructed at KRISS after the FOM, Netherland design had been successfully applied for the gate oxide analysis and quantitative surface analysis. Recenlty, we developed time-of-flight (TOF) MEIS system, for the first time in the world. With TOF-MEIS, we reported quantitative compositional profiling with single atomic layer resolution for 0.5~3 nm CdSe/ZnS conjugated QDs and ultra shallow junctions and FINFET's of As implanted Si. With this new TOF-MEIS nano analysis technique, details of nano-structured materials could be measured quantitatively. Progresses in TOF-MEIS analysis in various nano & bio technology will be discussed. For last 10 years, I have been trying to develop multimodal nanobio imaging techniques for cardiovascular and brain tissues. Firstly, in atherosclerotic plaque imaging, using, coherent anti-stokes raman scattering (CARS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) multimodal analysis showed that increased cholesterol palmitate may contribute to the formation of a necrotic core by increasing cell death. Secondly, surface plasmon resonance imaging ellipsometry (SPRIE) was developed for cell biointerface imaging of cell adhesion, migration, and infiltration dynamics for HUVEC, CASMC, and T cells. Thirdly, we developed an ambient mass spectrometric imaging system for live cells and tissues. Preliminary results on mouse brain hippocampus and hypotahlamus will be presented. In conclusions, multimodal optical and mass spectrometric imaging privides overall structural and morphological information with complementary molecular specific information, which can be a useful methodology for biomedical studies. Future challenges in optical and mass spectrometric imaging for new biomedical applications will be discussed.

  • PDF

Focus-adjustment Method for a High-magnification Zoom-lens System (고배율 줌 광학계의 상면 오차 보정 방법)

  • Jae Myung Ryu
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.2
    • /
    • pp.66-71
    • /
    • 2023
  • Zoom lenses are now starting to be applied to mobile-phone cameras as well. A zoom lens applied to a mobile-phone camera is mainly used to capture images in the telephoto range. Such an optical system has a long focal length, similar to that of a high-magnification zoom optical system, so the position of the imaging device also shifts significantly, due to manufacturing errors of the lenses and mechanical parts. In the past, the positional shift of the imaging device was corrected by moving the first lens group and the total optical system, but this paper confirms that the position of the imaging device can be corrected by selecting any two moving lens groups. However, it is found that more distance must be secured in the front and rear of a moving lens group for this purpose.

Risley Prisms Scanning Optical Imaging System Using Liquid Crystal Spatial Light Modulator

  • Song, Dalin;Chang, Jun;Zhao, Yifei;Zhao, Qing
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.215-219
    • /
    • 2019
  • Chromatic aberrations induced by Risley prisms made of a single material can be substantially compensated using a liquid crystal spatial light modulator while still keeping the prism pairs compact, simple and lightweight. A ${\pm}10^{\circ}$ optical scanning imaging system with ${\pm}2^{\circ}$instantaneous field based on LC-SLM correction is designed as an example. The ultimate simulation results show that this kind of scheme is an effective way of improving imaging performance dynamically across the full field of scanning.

Airborne Infrared Scanning Imaging System with Rotating Drum for Fire Detection

  • Song, c;Chang, Jun;Cao, Jiao;Zhang, Lifei;Wen, Yao;Wei, Aman;Li, Jiang
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.340-344
    • /
    • 2011
  • Airborne infrared techniques have been used in wild land fire management for decades. This paper describes a kind of infrared scanning system based on a rotating drum with a tilted porthole underside the plane nose. This design increases the stability of the mechanism system, reduces air resistance and protects inner parts. Aberration characteristics of a tilted ellipsoid porthole are analyzed and an effective solution is invented which makes the system achieve $30^{\circ}$ field of regard. The system's ultimate value of modulation transfer function is near the diffraction limit, which indicates that the performance of the rotating optical system meets the imaging requirements.

Optical Design of a Snapshot Nonmydriatic Fundus-imaging Spectrometer Based on the Eye Model

  • Zhao, Xuehui;Chang, Jun;Zhang, Wenchao;Wang, Dajiang;Chen, Weilin;Cao, Jiajing
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.151-160
    • /
    • 2022
  • Fundus images can reflect ocular diseases and systemic diseases such as glaucoma, diabetes mellitus, and hypertension. Thus, research on fundus-detection equipment is of great importance. The fundus camera has been widely used as a kind of noninvasive detection equipment. Most existing devices can only obtain two-dimensional (2D) retinal-image information, yet the fundus of the human eye also has spectral characteristics. The fundus has many pigments, and their different distributions in the eye lead to dissimilar tissue penetration for light waves, which can reflect the corresponding fundus structure. To obtain more abundant information and improve the detection level of equipment, a snapshot nonmydriatic fundus imaging spectral system, including fundus-imaging spectrometer and illumination system, is studied in this paper. The system uses a microlens array to realize snapshot technology; information can be obtained from only a single exposure. The system does not need to dilate the pupil. Hence, the operation is simple, which reduces its influence on the detected object. The system works in the visible and near-infrared bands (550-800 nm), with a volume less than 400 mm × 120 mm × 75 mm and a spectral resolution better than 6 nm.

A Study on the optical aspects of machine vision based dimensional measurement system (정밀 좌표측정용 머신비전 시스템의 광학적 해석에 관한 연구)

  • Lee, E.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.149-163
    • /
    • 1994
  • A novel method of dimensional measurement using machine vision, which is called Landmark Tracking System, has been developed. Its advantages come form tracking only the bright, standard shaped "landmarks" which are made from retroreflective sheets. In the design of the LTS, it is essential to know the relationship between optical parameters and their influence on system performance. Such optical parameters include the brightness of landmark image, the illumination system design, and the choice of imaging optics. And the performance of retroreflective material also plays important role in the LTS performances. Influences of such optical parameters on LTS's dimensional measurement characteristics are investigated, with respect to the retroreflective material, the imaging optics, and the illumination system. Measuremtn errors due to parameter variations are also analyzed. Experiments are performed with a LTS prototype. Retroreflective characteristics are verified, and the LTS's measurement performances are measured in the form of repeatability and accuracy. Experimental results shgow that the LTS has repeatability better than 1/30,000 of a field of view(30 degrees), and accuracy better tha 1/3,000 of a field fo view.d fo view.

  • PDF

Simultaneous Imaging Using Combined Optical Coherence Tomography (OCT) and Photoacoustic Microscopy (PAM) (광간섭 단층 촬영 장치와 광음향 현미경의 결합을 통한 동시 이미지 획득 연구)

  • Kim, Sehui;Lee, Changho;Han, Seonghoon;Kang, Hyun Wook;Oh, Junghwan;Kim, Jeehyun;Kim, Chulhong
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.91-96
    • /
    • 2013
  • In this study, we developed an integrated optical coherence tomography - photoacoustic microscopy (OCT-PAM) system to simultaneously provide optical absorption and scattering information. Two different laser sources, such as a pulsed laser for PAM and a superluminescent diode for OCT, were employed to implement the integrated OCT-PAM system. The performance of the OCT-PAM system was measured by imaging carbon fibers. We then imaged black and white hairs to demonstrate the simultaneous OCT-PAM imaging capabilities. As a result, OCT can produce 3-D images of both black and white hairs, whereas PAM is only able to image the black hair due to strong optical absorption of black hair.

Development of the Ultra Precision Thermal Imaging Optical System (초정밀 열 영상 현미경 광학계 개발)

  • Yang, Sun-Choel;Won, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.15-21
    • /
    • 2010
  • Recently, there is a demand for a thermal imaging microscope in the medical field as well as the semi-conductor industry Although the demand of the advanced thermal imaging microscope has been increased, it is very difficult to obtain the technology of developing a thermal camera, because it is used for defense industry. We developed the ${\times}5$ zoom microscope which has $3\;{\mu}m$ spatial resolution to research the design and fabrication of the IR (Infrared) optical system. The optical system of the IR microscope consists of four spherical lenses and four aspheric lenses. We verified individual sensitivity of each optical parameter as the first order approach to the analysis. And we also performed structure and vibration analysis. The optical elements are fabricated using Freeform 700A. The measurement results of surface roughness and form accuracy using NT 2000 and UA3P are Ra 2.36 nm and P-V $0.13\;{\mu}m$. Finally we ascertained resolution power of $3\;{\mu}m$ using USAF (United State Air Force) 1951 IR resolution test chart.

Numerical calculation of contrast transfer function for periodic line-space patterns (주기적인 선물체에 대한 Contrast Transfer Function의 수치계산)

  • 김형수;전영세;이종웅;김성호
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.6
    • /
    • pp.396-402
    • /
    • 1998
  • The measurement of OTF(optical transfer function) is used for evalution of imaging performance of optical system as a standard method. In the mass-production, the contrast measurement of projected patterns is also popular because of its simplicity. In this study, a computer program which evaluates the CTF(contrast transfer function) of optical system for periodic line-space patterns is developed by using the diffraction imaging theory. The MTF(modulation transfer function) and CTF of an aberrated system are evaluated and analyzed for the third order aberrations expressed by the C-coefficients and the Zemike polynomials.

  • PDF

Research on Camouflaged Encryption Scheme Based on Hadamard Matrix and Ghost Imaging Algorithm

  • Leihong, Zhang;Yang, Wang;Hualong, Ye;Runchu, Xu;Dawei, Zhang
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.686-698
    • /
    • 2021
  • A camouflaged encryption scheme based on Hadamard matrix and ghost imaging is proposed. In the process of the encryption, an orthogonal matrix is used as the projection pattern of ghost imaging to improve the definition of the reconstructed images. The ciphertext of the secret image is constrained to the camouflaged image. The key of the camouflaged image is obtained by the method of sparse decomposition by principal component orthogonal basis and the constrained ciphertext. The information of the secret image is hidden into the information of the camouflaged image which can improve the security of the system. In the decryption process, the authorized user needs to extract the key of the secret image according to the obtained random sequences. The real encrypted information can be obtained. Otherwise, the obtained image is the camouflaged image. In order to verify the feasibility, security and robustness of the encryption system, binary images and gray-scale images are selected for simulation and experiment. The results show that the proposed encryption system simplifies the calculation process, and also improves the definition of the reconstructed images and the security of the encryption system.