• 제목/요약/키워드: Imaging optical system

검색결과 585건 처리시간 0.029초

Design of Projection Optical System for Target Imaging Simulator with Long Exit Pupil Distance

  • Xueyuan Cao;Lingyun Wang;Guangxi Li;Ru Zheng
    • Current Optics and Photonics
    • /
    • 제7권6호
    • /
    • pp.745-754
    • /
    • 2023
  • In order to test the recognition ability and accuracy of a target imaging simulator under the irradiation of solar stray light in a laboratory environment, it needs to be fixed on a five-axis turntable during a hardware-in-the-loop simulation test, so the optical system of the simulator should have a long exit pupil distance. This article adopts a secondary imaging method to design a projection optical system suitable for thin-film-transistor liquid crystal displays. The exit pupil distance of the entire optical system is 1,000 mm, and the final optimization results in the 400 nm-850 nm band show that the modulation transfer function (MTF) of the optical system is greater than 0.8 at the cutoff frequency of 72 lp/mm, and the distortion of each field of view of the system is less than 0.04%. Combined with the design results of the optical system, TracePro software was used to model the optical system, and the simulation of the target imaging simulator at the magnitude of -1 to +6 Mv was analyzed and verified. The magnitude error is less than 0.2 Mv, and the irradiance uniformity of the exit pupil surface is greater than 90%, which meets the requirements of the target imaging simulator.

Optical Imaging Technology for Real-time Tumor Monitoring

  • Shin, Yoo-kyoung;Eom, Joo Beom
    • Medical Lasers
    • /
    • 제10권3호
    • /
    • pp.123-131
    • /
    • 2021
  • Optical imaging modalities with properties of real-time, non-invasive, in vivo, and high resolution for image-guided surgery have been widely studied. In this review, we introduce two optical imaging systems, that could be the core of image-guided surgery and introduce the system configuration, implementation, and operation methods. First, we introduce the optical coherence tomography (OCT) system implemented by our research group. This system is implemented based on a swept-source, and the system has an axial resolution of 11 ㎛ and a lateral resolution of 22 ㎛. Second, we introduce a fluorescence imaging system. The fluorescence imaging system was implemented based on the absorption and fluorescence wavelength of indocyanine green (ICG), with a light-emitting diode (LED) light source. To confirm the performance of the two imaging systems, human malignant melanoma cells were injected into BALB/c nude mice to create a xenograft model and using this, OCT images of cancer and pathological slide images were compared. In addition, in a mouse model, an intravenous injection of indocyanine green was used with a fluorescence imaging system to detect real-time images moving along blood vessels and to detect sentinel lymph nodes, which could be very important for cancer staging. Finally, polarization-sensitive OCT to find the boundaries of cancer in real-time and real-time image-guided surgery using a developed contrast agent and fluorescence imaging system were introduced.

Design and Experimental Demonstration of Coaxially Folded All-reflective Imaging System

  • Xiong, Yupeng;Dai, Yifan;Chen, Shanyong;Tie, Guipeng
    • Current Optics and Photonics
    • /
    • 제3권3호
    • /
    • pp.227-235
    • /
    • 2019
  • With slimmer, lighter and all-reflective imaging systems in high demand for consumer and military applications, coaxially folded optical image systems are widely considered because they can extend focal length and reduce track length. Most of these systems consist of multiple surfaces, and these surfaces are machined on one element or grouping processing on two elements. In this paper, we report and first experimentally demonstrate an all-aluminum all-reflective optical system which consists of two optical elements, with two high order aspherical surfaces in each element. The coaxially folded system is designed with Seidel aberration theory and advanced optimization with Zemax. The system is made of all-aluminum material processing by single point diamond turning (SPDT). On this basis, we completed the system integration and performed an imaging experiment. The final system has the advantages of short track length and long focal length and broad application prospects in the micro-unmanned aerial vehicle field.

A Ghost-Imaging System Based on a Microfluidic Chip

  • Wang, Kaimin;Han, Xiaoxuan;Ye, Hualong;Wang, Zhaorui;Zhang, Leihong;Hu, Jiafeng;Xu, Meiyong;Xin, Xiangjun;Zhang, Dawei
    • Current Optics and Photonics
    • /
    • 제5권2호
    • /
    • pp.147-154
    • /
    • 2021
  • Microfluidic chip technology is a research focus in biology, chemistry, and medicine, for example. However, microfluidic chips are rarely applied in imaging, especially in ghost imaging. Thus in this work we propose a ghost-imaging system, in which we deploy a novel microfluidic chip modulator (MCM) constructed of double-layer zigzag micro pipelines. While in traditional situations a spatial light modulator (SLM) and supporting computers are required, we can get rid of active modulation devices and computers with this proposed scheme. The corresponding simulation analysis verifies good feasibility of the scheme, which can ensure the quality of data transmission and achieve convenient, fast ghost imaging passively.

Common-path Optical Coherence Tomography for Biomedical Imaging and Sensing

  • Kang, Jin-U.;Han, Jae-Ho;Liu, Xuan;Zhang, Kang
    • Journal of the Optical Society of Korea
    • /
    • 제14권1호
    • /
    • pp.1-13
    • /
    • 2010
  • This paper describes a development of a fiber optic common-path optical coherence tomography (OCT) based imaging and guided system that possess ability to reliably identify optically transparent targets that are on the micron scale; ability to maintain a precise and safe position from the target; ability to provide spectroscopic imaging; ability to imaging biological target in 3-D. The system is based on a high resolution fiber optic Common-Path OCT (CP-OCT) that can be integrated into various mini-probes and tools. The system is capable of obtaining >70K A-scan per second with a resolution better than $3\;{\mu}m$. We have demonstrated that the system is capable of one-dimensional real-time depth tracking, tool motion limiting and motion compensation, oxygen-saturation level imaging, and high resolution 3-D images for various biomedical applications.

Image Reconstruction Based on Deep Learning for the SPIDER Optical Interferometric System

  • Sun, Yan;Liu, Chunling;Ma, Hongliu;Zhang, Wang
    • Current Optics and Photonics
    • /
    • 제6권3호
    • /
    • pp.260-269
    • /
    • 2022
  • Segmented planar imaging detector for electro-optical reconnaissance (SPIDER) is an emerging technology for optical imaging. However, this novel detection approach is faced with degraded imaging quality. In this study, a 6 × 6 planar waveguide is used after each lenslet to expand the field of view. The imaging principles of field-plane waveguide structures are described in detail. The local multiple-sampling simulation mode is adopted to process the simulation of the improved imaging system. A novel image-reconstruction algorithm based on deep learning is proposed, which can effectively address the defects in imaging quality that arise during image reconstruction. The proposed algorithm is compared to a conventional algorithm to verify its better reconstruction results. The comparison of different scenarios confirms the suitability of the algorithm to the system in this paper.

Influence of Atmospheric Turbulence Channel on a Ghost-imaging Transmission System

  • Wang, Kaimin;Wang, Zhaorui;Zhang, Leihong;Kang, Yi;Ye, Hualong;Hu, Jiafeng;Xu, Jiaming
    • Current Optics and Photonics
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2020
  • We research a system of compressed-sensing computational ghost imaging (CSCGI) based on the intensity fluctuation brought by turbulence. In this system, we used the gamma-gamma intensity-fluctuation model, which is commonly used in transmission systems, to simulate the CSCGI system. By setting proper values of the parameters such as transmission distance, refractive-index structure parameter, and sampling rates, the peak signal-to-noise ratio (PSNR) performance and bit-error rate (BER) performance are obtained to evaluate the imaging quality, which provides a theoretical model to further research the ghost-imaging algorithm.

소동물 발광영상 측정을 위한 광학분자영상기기의 개발 (Development of Optical Molecular Imaging System for the Acquisition of Bioluminescence Signals from Small Animals)

  • 이병일;김현식;정혜진;이형재;문성민;권성영;최은서;정신영;범희승;민정준
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제43권4호
    • /
    • pp.344-351
    • /
    • 2009
  • 목적: 광학영상기술은 소동물이나 임상연구에서 분자영상법으로 알려진 첨단연구 분야이다. 광학영상기기는 소동물영상연구 및 추적연구에 중요한 역할을 수행하고 있다. 발광영상에서 소동물을 영상화 하기 위해서는 피부조직을 뚫고 나오는 광자를 검출하기 위한 고민감도 CCD카메라가 필요하다. 이 연구에서는 소동물에서 발생하는 발광신호를 검출하기 위해 개발한 광학영상기기를 소개하고자 한다. 대상 및 방법: 냉각형 CCD카메라와 집광렌즈, 8개의 백색광 LED광원을 암실상자 안에 장치하였다. 팬텀 및 튜브를 이용한 영상을 얻은 후 발광 박테리아를 이용하여 CT26 암모델 누드마우스에서 영상을 획득하였다. 결과: 발광영상을 얻기 위한 광학영상기기를 설계하고 개발하였다. 영상획득이 성공적으로 수행되었고, 시스템을 완성하였다. 개발된 장비는 분자영상연구에 사용되고 있다. 결론 개발된 광학영상장비는 다양한 실험적 조건을 만족하는 연구에 최적화하여 유용한 도구로 자리잡을 것으로 기대한다.

CCD image system을 갖는 유전체칩 분석장치를 위한 효율적인 광학시스템 설계 (Effective Optical System Design for Biochip Analyzer with CCD Image System)

  • 배수진;강욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.488-491
    • /
    • 2003
  • Biochip-based diagnostic technology is an effective, time- and money- saving way. But, biochip analyzer including CCD imaging system has a complete optical system. It is one of reasons that the cost of biochip analyzer is expensive with CCD imaging system. In this paper, We suggested the simple and effective optical system for biochip analyzer with CCD imaging system. It consists of two parts with the same structure but opposite direction. Each part consists of achromatic doublet and meniscus. Suggested optical system has less lenses than existing system and more efficiently.

  • PDF

동의 결상을 기준으로 한 등가렌즈 변환에 대한 연구 (Converting a Lens to Its Equivalent as Referenced to Pupil Imaging)

  • 방현진;이종웅
    • 한국광학회지
    • /
    • 제25권1호
    • /
    • pp.14-20
    • /
    • 2014
  • 등가렌즈는 굴절능과 특정한 기준광선에 대한 근축광학적 특성은 같고, 축상두께가 다른 렌즈이다. 이 연구에서는 동의 결상을 기준으로 광학계의 두꺼운 렌즈를 등가렌즈로 변환하고 일반적으로 사용되던 물체의 결상을 기준으로 등가렌즈로 변환한 경우와 Seidel 수차의 변화를 비교하였다.