DOI QR코드

DOI QR Code

A Ghost-Imaging System Based on a Microfluidic Chip

  • Wang, Kaimin (Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology) ;
  • Han, Xiaoxuan (Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology) ;
  • Ye, Hualong (Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology) ;
  • Wang, Zhaorui (Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology) ;
  • Zhang, Leihong (Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology) ;
  • Hu, Jiafeng (School of Physics and Electronics, East China Normal University) ;
  • Xu, Meiyong (School of Electronic Engineering, Beijing University of Posts and Telecommunications) ;
  • Xin, Xiangjun (School of Electronic Engineering, Beijing University of Posts and Telecommunications) ;
  • Zhang, Dawei (Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology)
  • Received : 2020.09.19
  • Accepted : 2021.01.23
  • Published : 2021.04.25

Abstract

Microfluidic chip technology is a research focus in biology, chemistry, and medicine, for example. However, microfluidic chips are rarely applied in imaging, especially in ghost imaging. Thus in this work we propose a ghost-imaging system, in which we deploy a novel microfluidic chip modulator (MCM) constructed of double-layer zigzag micro pipelines. While in traditional situations a spatial light modulator (SLM) and supporting computers are required, we can get rid of active modulation devices and computers with this proposed scheme. The corresponding simulation analysis verifies good feasibility of the scheme, which can ensure the quality of data transmission and achieve convenient, fast ghost imaging passively.

Keywords

References

  1. Z. Liu, S. Tan, J. Wu, E. Li, X. Shen, and S. Han, "Spectral camera based on ghost imaging via sparsity constraints," Sci. Rep. 6, 25718 (2016). https://doi.org/10.1038/srep25718
  2. B. Luo, P. Yin, L. Yin, G. Wu, and H. Guo, "Orthonormalization method in ghost imaging," Opt. Express 26, 23093-23106 (2018). https://doi.org/10.1364/oe.26.023093
  3. P. A. Moreau, E. Toninelli, T. Gregory, and M. J. Padgett, "Ghost imaging using optical correlations," Laser Photonics Rev. 12, 1700143 (2018). https://doi.org/10.1002/lpor.201700143
  4. Y. Yu, C. Wang, J. Liu, J. Wang, M. Cao, D. Wei, H. Gao, and F. Li, "Ghost imaging with different frequencies through non-degenerated four-wave mixing," Opt. Express 24, 18290-18296 (2016). https://doi.org/10.1364/OE.24.018290
  5. T. Mao, Q. Chen, W. He, Y. Zou, H. Dai, and G. Gu, "Speckle-shifting ghost imaging," IEEE Photonics J. 8, 6900810 (2016).
  6. K. Kuplicki, and K. W. C. Chan, "High-order ghost imaging using non-Rayleigh speckle sources," Opt. Express 24, 26766-26776 (2016). https://doi.org/10.1364/OE.24.026766
  7. D. B. Phillips, R. He, Q. Chen, G. M. Gibson, and M. J. Padgett, "Non-diffractive computational ghost imaging," Opt. Express 24, 14172-14182 (2016). https://doi.org/10.1364/OE.24.014172
  8. R. S. Bennink, S. J. Bentley, and R. W. Boyd, ""Two-photon" coincidence imaging with a classical source," Phys. Rev. Lett. 89, 113601 (2002). https://doi.org/10.1103/PhysRevLett.89.113601
  9. J. Tang, D. Zou, M. Cheng, L. Deng, D. Liu, and M. Zhang, "Single-shot temporal ghost imaging based on orthogonal frequency-division multiplexing," IEEE Photonics Technol. Lett. 30, 1555-1558 (2018). https://doi.org/10.1109/lpt.2018.2861619
  10. J. Tang, Y. Tang, K. He, L. Lu, D. Zhang, M. Cheng, L. Deng, D. Liu, and M. M. Zhang, "Computational temporal ghost imaging using intensity-only detection over a single optical fiber," IEEE Photonics J. 10, 7101809 (2018).
  11. P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, "Ghost imaging in the time domain," Nat. Photonics 10, 167-170 (2016). https://doi.org/10.1038/nphoton.2015.274
  12. Y. O-oka, and S. Fukatsu, "Differential ghost imaging in time domain," Appl. Phys. Lett. 111, 061106 (2017). https://doi.org/10.1063/1.4997925
  13. A. M. Paniagua-Diaz, I. Starshynov, N. Fayard, A. Goetschy, R. Pierrat, R. Carminati, and J. Bertolotti, "Blind ghost imaging," Optica 6, 460-464 (2019). https://doi.org/10.1364/optica.6.000460
  14. Y. Basati, O. R. Mohammadipour, and H. Niazmand, "Numerical and analytical analysis of a robust flow regulator in electroosmotic microfluidic networks," Chem. Eng. Sci. 210, 115232 (2019). https://doi.org/10.1016/j.ces.2019.115232
  15. H. S. Rho, Y. Yang, L. W. M. M. Terstappen, H. Gardeniers, S. Le Gac, and P. Habibovic, "Programmable droplet-based microfluidic serial dilutor," J. Ind. Eng. Chem. 91, 231-239 (2020). https://doi.org/10.1016/j.jiec.2020.08.004
  16. P. Liang, J. Ye, D. Zhang, X. Zhang, Z. Yu, and B. Lin, "Controllable droplet breakup in microfluidic devices via hydrostatic pressure," Chem. Eng. Sci. 226, 115856 (2020). https://doi.org/10.1016/j.ces.2020.115856
  17. H. Lackey, D. Bottenus, M. Liezers, S. Shen, S. Branch, J. Katalenich, and A. Lines, "A versatile and low-cost chip-to-world interface: enabling ICP-MS characterization of isotachophoretically separated lanthanides on a microfluidic device," Anal. Chim. Acta. 1137, 11-18 (2020). https://doi.org/10.1016/j.aca.2020.08.049
  18. A. Kiss and A. Gaspar, "Fabrication of a microfluidic flame atomic emission spectrometer: a flame-on-a-chip," Anal. Chem. 90, 5995-6000 (2018). https://doi.org/10.1021/acs.analchem.8b00774
  19. D. Mark, S. Haeberle, G. Roth, F. von Stetten and R. Zengerle, "Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications," Chem. Soc. Rev. 39, 1153-1182 (2010). https://doi.org/10.1039/b820557b
  20. B. C. Lin, "Research and industrialization of microfluidic chip," Chin. J. Anal. Chem. 44, 491-499 (2016).
  21. Z. Fang, and Q. Fang, "Developments and trends of microfluidic chip analytical systems," Mod. Sci. Instrum. 4, 3-6 (2001).
  22. Z. Zhang, J. Pan, Y. Tang, Y. Xu, L. Zhang, Y. Gong, and L. Tong, "Optical micro/nanofibre embedded soft film enables multifunctional flow sensing in microfluidic chips," Lab Chip 20, 2572-2579 (2020). https://doi.org/10.1039/D0LC00178C
  23. T. Prangemeier, F.-X. Lehr, R. M. Schoeman, and H. Koeppl, "Microfluidic platforms for the dynamic characterisation of synthetic circuitry," Curr. Opin. Biotechnol. 63, 167-176 (2020). https://doi.org/10.1016/j.copbio.2020.02.002
  24. M. N. Hossain, J. Justice, P. Lovera, A. O'Riordan, and B. Corbett, "Dual resonance approach to decoupling surface and bulk attributes in photonic crystal biosensor," Opt. Lett. 39, 6213-6216 (2014). https://doi.org/10.1364/OL.39.006213
  25. J. Raveendran and T. G. S. Babu, "Design and fabrication of a three layered microfluidic device for lab on a chip applications," Mater. Today: Proc. 5, 16286-16292 (2018). https://doi.org/10.1016/j.matpr.2018.05.121
  26. J. Dietvorst, J. Goyvaerts, T. N. Ackermann, E. Alvarez, X. Munoz-Berbel, and A. Llobera, "Microfluidic-controlled optical router for lab on a chip," Lab Chip 19, 2081-2088 (2019). https://doi.org/10.1039/C9LC00143C
  27. T. Bian, Y. Dai, J. Hu, Z. Zheng, and L. Gao, "Ghost imaging based on asymmetric learning," Appl. Opt. 59, 9548-9552 (2020). https://doi.org/10.1364/AO.405120
  28. L. Zhang, Y. Hualong, and D. Zhang, "Study on the key technology of image transmission mechanism based on channel coding ghost imaging," IEEE Photonics J. 10, 6500913 (2018).
  29. G. Wu, H. Mo, Z. Han, J. Li, D. Yang, and Q. Pen, "Sensitivity analysis of correspondence ghost imaging," Laser Phys. Lett. 17, 115205 (2020). https://doi.org/10.1088/1612-202X/abbef5
  30. S. Zhao, X. Yu, L. Wang, W. Li, and B. Zheng, "Secure optical encryption based on ghost imaging with fractional Fourier transform," Opt. Commun. 474, 126086 (2020). https://doi.org/10.1016/j.optcom.2020.126086
  31. H. Wu, G. Zhao, R. Wang, H. Xiao, D. Wang, J. Liang, L. Cheng, and R. Liang, "Computational ghost imaging system with 4-connected-region-optimized Hadamard pattern sequence," Opt. Lasers Eng. 132, 106105 (2020). https://doi.org/10.1016/j.optlaseng.2020.106105