• Title/Summary/Keyword: Imaging Optics

Search Result 404, Processing Time 0.02 seconds

Optical design of three-mirror telescope system for infra-red and visible imaging (적외선 및 가시광선 결상용 3반사망원경계의 설계)

  • 이종웅;홍경희;권우근
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.183-190
    • /
    • 1996
  • To design three-mirror telescope system (F/8, 120 inch in focal length) for visible and infra-red band imaging, methods for power configuring and correction of the third order aberrations were studied. In the design of the telescope system, a three-mirror system corrected for spherical aberration, coma, and astigmatism was used for infra-red imaging, and the aberrations were corrected by using conic surfaces. For visible imaging, a singlet corrector lens was appended at the front of the focal plane to correct filed curvature. The telescope system has diffraction limited performance for 10 ${\mu}{\textrm}{m}$ in wavelength within 2.4$^{\circ}$ of field-of-view. In the visible band imaging, the rms spot size of the telescope system is less than 25 ${\mu}{\textrm}{m}$ within 3$^{\circ}$ of field-of-view for monochromatic light, and the telescope system satisfies flat field condition for CCD application.

  • PDF

Optomechanical Design of a Compact Imaging Spectrometer for a Microsatellite STSAT3

  • Lee, Jun-Ho;Lee, Chi-Weon;Kim, Yong-Min;Kim, Jae-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.193-200
    • /
    • 2009
  • A compact imaging spectrometer (COMIS) is currently under development for use in the STSAT3 microsatellite. COMIS images the Earth's surface and atmosphere with ground sampling distances of ${\sim}30m$ in the $18{\sim}62$ spectral bands ($4.0{\sim}1.05{\mu}m$) for the nadir looking at an altitude of 700 km. COMIS has an imaging telescope and an imaging spectrometer box into which three electronics PCBs are embedded. These are designed into a single assembly with dimensions of 35(L) $\times$ 20(W) $\times$ 12(H) $cm^3$ and a mass of 4.3 kg. Optomechanical design efforts are focused on manufacturing ease, alignment, assembly, testing and improved robustness in space environments. Finite element analysis demonstrates that COMIS will survive in launch and space environments and perform the system modulation transfer function (MTF) in excess of 0.29 at the Nyquist frequency of the CCD detector (38.5 lines-per-mm).

Terahertz Nondestructive Time-of-flight Imaging with a Large Depth Range

  • Kim, Hwan Sik;Kim, Jangsun;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.619-626
    • /
    • 2022
  • In this study, we develop a three-dimensional (3D) terahertz time-of-flight (THz-TOF) imaging technique with a large depth range, based on asynchronous optical sampling (ASOPS) methods. THz-TOF imaging with the ASOPS technique enables rapid scanning with a time-delay span of 10 ns. This means that a depth range of 1.5 m is possible in principle, whereas in practice it is limited by the focus depth determined by the optical geometry, such as the focal length of the scan lens. We characterize the spatial resolution of objects at different vertical positions with a focal length of 5 cm. The lateral resolution varies from 0.8-1.8 mm within the vertical range of 50 mm. We obtain THz-TOF images for samples with multiple reflection layers; the horizontal and vertical locations of the objects are successfully determined from the 2D cross-sectional images, or from reconstructed 3D images. For instance, we can identify metallic objects embedded in insulating enclosures having a vertical depth range greater than 30 mm. For feasible practical use, we employ the proposed technique to locate a metallic object within a thick chocolate bar, which is not accessible via conventional transmission geometry.

Design and Analysis of an Optical System for an Uncooled Thermal-imaging Camera Using a Hybrid Lens (Hybrid 렌즈를 이용한 비냉각 열상장비 광학계 설계 및 분석)

  • Ok, Chang-Min;Kong, Hyun-Bae;Park, Hyun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.241-249
    • /
    • 2017
  • This paper presents the design and evaluation of the optical system for an uncooled thermal-imaging camera. The operating wavelength range of this system is from $7.7{\mu}m$ to $12.8{\mu}m$. Through optimization, we have obtained a LWIR (Long Wave Infrared) optical system with a focal length of 5.44 mm, which consists of four aspheric surfaces and two diffractive surfaces. The f-number of the optical system is F/1.2, and its field of view is $90^{\circ}{\times}67.5^{\circ}$. The hybrid lens was used to balance the higher-order aberrations, and its diffraction properties were evaluated by scalar diffraction theory. We calculated the polychromatic integrated diffraction efficiency, and the MTF drop generated by background noise. We have evaluated the thermal compensation of a LWIR fixed optical system, which is optically passively athermalized to maintain MTF performance in the focal depth. In conclusion, these design results are useful for an uncooled thermal-imaging camera.

Performance Analysis of Spiral Axicon Wavefront Coding Imaging System for Laser Protection

  • Haoqi Luo;Yangliang Li;Junyu Zhang;Hao Zhang;Yunlong Wu;Qing Ye
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.355-365
    • /
    • 2024
  • Wavefront coding (WFC) imaging systems can redistribute the energy of an interference laser spot on an image plane sensor by wavefront phase modulation and reduce the peak intensity, realizing laser protection while maintaining imaging functionality by leveraging algorithmic post-processing. In this paper, a spiral axicon WFC imaging system is proposed, and the performance for laser protection is investigated by constructing a laser transmission model. An Airy disk on an image plane sensor is refactored into a symmetrical hollow ring by a spiral axicon phase mask, and the maximum intensity can be reduced to lower than 1% and single-pixel power to 1.2%. The spiral axicon phase mask exhibits strong robustness to the position of the interference laser source and can effectively reduce the risk of sensor damage for an almost arbitrary lase propagation distance. Moreover, we revealed that there is a sensor hazard distance for both conventional and WFC imaging systems where the maximum single-pixel power reaches a peak value under irradiation of a power-fixed laser source. Our findings can offer guidance for the anti-laser reinforcement design of photoelectric imaging systems, thereby enhancing the adaptability of imaging systems in a complex laser environment. The laser blinding-resistant imaging system has potential applications in security monitoring, autonomous driving, and intense-laser-pulse experiments.

Development of the Imaging Optical System for the 545 nm Fluorescent Plate of X-ray (X선용 545 nm 형광판 결상광학계 개발)

  • Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.2
    • /
    • pp.17-22
    • /
    • 2008
  • To develop an imaging optical system for the 545 nm fluorescent plate of X-ray. Methods: We designed and manufactured a new imaging optical system for the 545 nm fluorescent plate of X-ray by Sigma 2000 program after deciding the design comparison standards referred to Canon CX2-70 model. Results: The characteristics of the new imaging optical system for the 545 nm fluorescent plate of X-ray have the magnification of -0.225x, the image field size of $90mm{\times}90mm$, and the 0.033 mm resolution line width at the 30% MTF value criterion. These mean that the new model has a capability of deciphering for the more large screen and the resolution of deciphering is superior to that of Canon CX2-70 model. Also the image side NA (-0.196) of the new model is about $\sqrt{2}$ times than that (-0.139) of CX2-70 and the object side NA (0.044) of the new model is about 2 times than that (0.022) of CX2-70. These mean that the sensitivity of the film in the new design model is able to be increased to about 4 times and there is the possibility of reducing the bombed time of X-ray to 1/4 times. Conclusions: We could design and manufacture the imaging optical system for the 545 nm fluorescent plate of X-ray having the possibility of reducing the bombed time of X-ray to 1/4 times in comparision to Canon CX2-70 model, the characteristics of which have the image field size of $90mm{\times}90mm$ and the MTF of 30% or more at 15 lines/mm criterion.

  • PDF

Inscribed Transceiver Optical System Design for Laser Radar with Zoom-type Expander (줌렌즈 광속확대기를 적용한 레이저 레이더용 송수광 내접형 광학계 설계)

  • Koh, Hae Seog;Ok, Chang Min;Hong, Jin Sug;Lee, Chang Jae;Park, Chan Geun;Kim, Hyun Kyu
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.1
    • /
    • pp.23-28
    • /
    • 2013
  • In this paper, an optical system was designed for 3D imaging laser radar with optical scanner. In order to make it easy to scan, the system was designed to inscribe the transmitting objective lens in the receiving lens. In transmitting optics, the beam expander was designed to have a zoom mechanism so that the transmitted beam size would be 4.8 m or 6.8 m at 1 km distance, when the laser source's numerical aperture value is between 0.13 and 0.22. The beam diameter at the target 1 km away was confirmed by design program. The receiving optics for the returning beam from the target was designed for the $16{\times}16$ array detector with $100{\mu}m$ pixel width. The spot diameter in every pixel was designed and verified to be less than $55{\mu}m$. The receiving optics' obscuration ratio by transmitting optics was 11%.

Development of a High-Speed Endoscopic OCT System and Its Application to Three-Dimensional Intravascular Imaging in Vivo (고속 내시경적 OFDI 시스템 개발과 이를 이용한 3차원 생체 혈관 내부 이미징)

  • Cho, Han Saem;Jang, Sun-Joo;Oh, Wang-Yuhl
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.2
    • /
    • pp.67-71
    • /
    • 2014
  • Intravascular optical coherence tomography (OCT) enables imaging of the three-dimensional (3D) microstructure of a blood vessel wall. While 3D vascular visualization provides detailed information of the vessel wall and intraluminal structures, a longitudinal imaging pitch that is several times bigger than the imaging resolution of the system has limited true high-resolution 3D imaging. In this paper we demonstrate high-speed intravascular OCT in vivo, acquiring images at a rate of 350 frames per second. A 47-mm-long rabbit aorta was imaged in 3.7 seconds, after a short flush with contrast agent. The longitudinal imaging pitch was 34 micrometers, comparable to the transverse imaging resolution of the system. Three-dimensional volume rendering showed greatly enhanced visualization of tissue microstructure and stent struts, relative to what is provided by conventional intravascular imaging speeds.

Reconstruction of Wide FOV Image from Hyperbolic Cylinder Mirror Camera (실린더형 쌍곡면 반사체 카메라 광각영상 복원)

  • Kim, Soon-Cheol;Yi, Soo-Yeong
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.3
    • /
    • pp.146-153
    • /
    • 2015
  • In order to contain as much information as possible in a single image, a wide FOV(Field-Of-View) imaging system is required. The catadioptric imaging system with hyperbolic cylinder mirror can acquire over 180 degree horizontal FOV realtime panorama image by using a conventional camera. Because the hyperbolic cylinder mirror has a curved surface in horizontal axis, the original image acquired from the imaging system has the geometrical distortion, which requires the image processing algorithm for reconstruction. In this paper, the image reconstruction algorithms for two cases are studied: (1) to obtain an image with uniform angular resolution and (2) to obtain horizontally rectilinear image. The image acquisition model of the hyperbolic cylinder mirror imaging system is analyzed by the geometrical optics and the image reconstruction algorithms are proposed based on the image acquisition model. To show the validity of the proposed algorithms, experiments are carried out and presented in this paper. The experimental results show that the reconstructed images have a uniform angular resolution and a rectilinear form in horizontal axis, which are natural to human.

Optical Design and Fabrication of a Large Telephoto Zoom Lens with Fixed f/2.8 and Light Autofocus Lens

  • Ryu, Jae Myung;Gang, Geon Mo;Lee, Hyuck Ki;Lee, Ki Woo;Heu, Min;Jo, Jae Heung
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.629-637
    • /
    • 2015
  • Compact system cameras (CSCs) are commonly used nowadays and feature enhanced video functions and thin yet light interchangeable lenses. They differ from digital single-lens reflex (DSLR) cameras in their lack of mirror boxes. CSCs, however, have autofocus (AF) speeds lower than those of conventional DSLRs, requiring weight reduction of their AF groups. To ensure the marketability of large telephoto zoom lenses with fixed f/2.8 regardless of field angle variation, in particular, light weight AF groups are essential. In this paper, we introduce a paraxial optical design method and present a new, large, telephoto zoom lens with f/2.8 regardless of the field angle variation, plus a lightweight AF group consisting of only one lens. Using the basic paraxial optical design and optimization methods, we fabricated a new and lighter zoom lens system, including a single-lens, lightweight AF group with almost the same performance.