• Title/Summary/Keyword: Imaging Method

Search Result 3,043, Processing Time 0.035 seconds

Strategies to improve the range verification of stochastic origin ensembles for low-count prompt gamma imaging

  • Hsuan-Ming Huang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3700-3708
    • /
    • 2023
  • The stochastic origin ensembles method with resolution recovery (SOE-RR) has been proposed to reconstruct proton-induced prompt gammas (PGs), and the reconstructed PG image was used for range verification. However, due to low detection efficiency, the number of valid events is low. Such a low-count condition can degrade the accuracy of the SOE-RR method for proton range verification. In this study, we proposed two strategies to improve the reconstruction of the SOE-RR algorithm for low-count PG imaging. We also studied the number of iterations and repetitions required to achieve reliable range verification. We simulated a proton beam (108 protons) irradiated on a water phantom and used a two-layer Compton camera to detect 4.44-MeV PGs. Our simulated results show that combining the SOE-RR algorithm with restricted volume (SOE-RR-RV) can reduce the error of the estimation of the Bragg peak position from 5.0 mm to 2.5 mm. We also found that the SOE-RR-RV algorithm initialized using a back-projection image could improve the convergence rate while maintaining accurate range verification. Finally, we observed that the improved SOE-RR algorithm set for 60,000 iterations and 25 repetitions could provide reliable PG images. Based on the proposed reconstruction strategies, the SOE-RR algorithm has the potential to achieve a positioning error of 2.5 mm for low-count PG imaging.

A fast and accurate method of extracting lens array lattice in integral imaging (집적 영상에서 빠르고 정확한 렌즈 배열 격자 검출 방법)

  • Jeong, Hyeon-Ah;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1711-1717
    • /
    • 2017
  • In this paper, we propose a fast and accurate method of extracting lens array lattice in integral imaging by using an appropriate calibration pattern image and fast median filtering. In order to extract the lattice of a lens array, vertical and horizontal edge images are required. To extract edge images, the well-known previous method used separable median filters. However, this method is slow and difficult to determine the median filter size. In order to overcome this problem, we try to improve speed by calculating median value through binary counting method. In addition, we propose a calibration pattern image that detects edges well and improves the accuracy. Experimental results indicate that the proposed method is superior to the existing method in extracting the lattice of a lens array in integral imaging.

Low-noise reconstruction method for coded-aperture gamma camera based on multi-layer perceptron

  • Zhang, Rui;Tang, Xiaobin;Gong, Pin;Wang, Peng;Zhou, Cheng;Zhu, Xiaoxiang;Liang, Dajian;Wang, Zeyu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2250-2261
    • /
    • 2020
  • Accurate localization of radioactive materials is crucial in homeland security and radiological emergencies. Coded-aperture gamma camera is an interesting solution for such applications and can be developed into portable real-time imaging devices. However, traditional reconstruction methods cannot effectively deal with signal-independent noise, thereby hindering low-noise real-time imaging. In this study, a novel reconstruction method with excellent noise-suppression capability based on a multi-layer perceptron (MLP) is proposed. A coded-aperture gamma camera based on pixel detector and coded-aperture mask was constructed, and the process of radioactive source imaging was simulated. Results showed that the MLP method performs better in noise suppression than the traditional correlation analysis method. When the Co-57 source with an activity of 1 MBq was at 289 different positions within the field of view which correspond to 289 different pixels in the reconstructed image, the average contrast-to-noise ratio (CNR) obtained by the MLP method was 21.82, whereas that obtained by the correlation analysis method was 5.85. The variance in CNR of the MLP method is larger than that of correlation analysis, which means the MLP method has some instability in certain conditions.

Plane-based Computational Integral Imaging Reconstruction Method of Three-Dimensional Images based on Round-type Mapping Model (원형 매핑 모델에 기초한 3차원 영상의 평면기반 컴퓨터 집적 영상 재생 방식)

  • Shin, Dong-Hak;Kim, Nam-Woo;Lee, Joon-Jae;Kim, Eun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.991-996
    • /
    • 2007
  • Recently, a computational reconstruction method using an integral imaging technique, which is a promise three-dimensional display technique, has been actively researched. This method is that 3-D images can be digitally reconstructed at the required output planes by superposition of all of the inversely enlarged elemental images by using a hypothetical pinhole array model. However, the conventional method mostly yields reconstructed images having a low-resolution, because there are some intensity irregularities with a grid structure at the reconstructed mage plane by using square-type elemental images. In this paper, to overcome this problem, we propose a novel computational integral imaging reconstruction (CIIR) method using round-type mapping model. Proposed CIIR method can overcome problems of non-uniformly reconstructed images caused from the conventional method and improve the resolution of 3-D images. To show the usefulness of the proposed method, both computational experiment and optical experiment are carried out and their results are presented.

Examination Techniques and Imaging Findings of Hepatic Hemangioma (간혈관종의 검사기법과 영상소견)

  • Chang-Hoe Koo;Jong-Wan Keum;Ji-Eun Seok;Dong-Chul Choi;Yun-Ho Choi;Man-Seok Han;Min-Cheol Jeon
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.375-384
    • /
    • 2023
  • Most Hepatic hemangiomas are asymptomatic and small in size, making them difficult to find by pathological examination. Therefore, radiological diagnosis is essential for the early finding and diagnosis of Hepatic hemangioma. Three-phase method using contrast medium in computed tomography, T1, T2-weighted imaging in magnetic resonance imaging, dynamic magnetic resonance imaging using contrast medium, echo planar imaging method, diffusion-weighted imaging method, blood pool scan using 99mTc-labeled red blood cells in nuclear medicine, we looked at the color doppler method In ultrasound, and it is important to accurately understand the imaging findings of hepatic hemangioma and perform the examination in order to make an accurate diagnosis. most hepatic hemangioma are benign tumors, care should be taken not to confuse them with malignant tumors such as hepatocellular carcinoma to prevent unnecessary procedures. Therefore, in order to make an accurate diagnosis, it is important to accurately understand the imaging findings of hemangioma and perform the examination.

Computational integral imaging reconstruction of 3D object using a depth conversion technique

  • Tan, Chun-Wei;Shin, Dong-Hak;Lee, Byung-Gook;Kim, Eun-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.730-733
    • /
    • 2008
  • In this paper, a novel CII method using a depth conversion technique is proposed. The proposed method can move a far 3D object near lenslet array and reduce the computation cost dramatically. To show the usefulness of the proposed method, we carry out the preliminary experiment and its results are presented.

  • PDF

Background Removing for Digital image self-adaptive acquisition in medical X-ray imaging

  • Li, Xun;Kim, Young-Ju;Song, Young-Jun
    • International Journal of Contents
    • /
    • v.4 no.1
    • /
    • pp.12-15
    • /
    • 2008
  • In this paper, we propose a new method of background removing for digital self-adaptive acquisition in medical X-ray imaging. We analysis the construction of video digital acquisition system and main factors of acquired image quality, propose a more efficiency method to against background non-uniformly. With proposed method, non-uniform illumination back ground was well removed without image quality degradation.

A Study on the Improvement a Lateral Resolution of the Ultrasound Imaging System (초음파 영상장치에서 측방향 해상도 향상에 관한 연구)

  • 이후정;이행세
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.87-92
    • /
    • 1988
  • In this paper, a new focusing method, to be called the pipelined sampled delay focusing (PSDF), is implemented. This method improves the lateral resolution in ultrasound imaging system. In PSDF, the analog belay lines are no longer necessary because sampling sum process can replace the conventional delay sum process. Also, the method offers continuous dynamic focusing on the resolution pixel basis, and eliminates the constraint that the maximum delay time is less than the sampling interval. Second order sampling is adopted in order to extend the sampling interval.

  • PDF

A study on the Variable Elimination of the 0-th order Diffraction Using the Fourier Transform in the Digital Holography Microscope System

  • Choi, Kyu-Hwan;Kim, Sung-Kyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1357-1360
    • /
    • 2009
  • In this study, the 0-th order diffraction could be efficiently removed with the obtained data for one hologram using the numerical reconstruction method. This method has a reduced data acquisition and processing time compared with the existing method wherein the data for two or more phase holograms are obtained for regeneration, and efficiently eliminates the 0-th order diffraction.

  • PDF

Demosaicking of Hexagonally-Structured Bayer Color Filter Array (육각형 구조의 베이어 컬러 필터 배열에 대한 디모자익킹)

  • Lee, Kyungme;Yoo, Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1434-1440
    • /
    • 2014
  • This paper describes a demosaicking method for hexagonally-structured color filter array. Demosaicking is essential to acquire color images using color filter array (CFA) in single sensor imaging. Thus, CFA patterns have been discussed in order to improve image quality in single sensor imaging after the Bayer pattern are introduced. Advancements in imaging sensor technology recently introduce a hexagonal CFA pattern. The hexagonal CFA can be considered to be a 45-degree rotational version of the Bayer pattern, thus demosaicking can be implemented by an existing method with backward and forward 45-degree rotations. However, this approach requires heavy computing power and memory in image sensing devices because of the image rotations. To overcome this problem, we proposes a demosaicking method for a hexagonal Bayer CFA without rotations. In addition, we introduce a weighting parameter in our demosaicking method to improve image quality and to unifying exiting method with our method. Experimental results indicate that the proposed method is superior to conventional methods in terms of PSNR. In addition, some optimized values for the weighting parameter are provided experimentally.