DOI QR코드

DOI QR Code

Strategies to improve the range verification of stochastic origin ensembles for low-count prompt gamma imaging

  • Hsuan-Ming Huang (Institute of Medical Device and Imaging, College of Medicine, National Taiwan University)
  • Received : 2022.12.02
  • Accepted : 2023.06.20
  • Published : 2023.10.25

Abstract

The stochastic origin ensembles method with resolution recovery (SOE-RR) has been proposed to reconstruct proton-induced prompt gammas (PGs), and the reconstructed PG image was used for range verification. However, due to low detection efficiency, the number of valid events is low. Such a low-count condition can degrade the accuracy of the SOE-RR method for proton range verification. In this study, we proposed two strategies to improve the reconstruction of the SOE-RR algorithm for low-count PG imaging. We also studied the number of iterations and repetitions required to achieve reliable range verification. We simulated a proton beam (108 protons) irradiated on a water phantom and used a two-layer Compton camera to detect 4.44-MeV PGs. Our simulated results show that combining the SOE-RR algorithm with restricted volume (SOE-RR-RV) can reduce the error of the estimation of the Bragg peak position from 5.0 mm to 2.5 mm. We also found that the SOE-RR-RV algorithm initialized using a back-projection image could improve the convergence rate while maintaining accurate range verification. Finally, we observed that the improved SOE-RR algorithm set for 60,000 iterations and 25 repetitions could provide reliable PG images. Based on the proposed reconstruction strategies, the SOE-RR algorithm has the potential to achieve a positioning error of 2.5 mm for low-count PG imaging.

Keywords

Acknowledgement

This work was partially supported by the Ministry of Science and Technology, Taiwan (grant numbers: MOST 106-2221-E-002-235).

References

  1. J. Iwanczyk, K. Iniewski, Second ed., Radiation detection systems: Two, Volume Set, CRC Press, 2021.
  2. J.C. Polf, S. Peterson, G. Ciangaru, M. Gillin, S. Beddar, Prompt gamma-ray emission from biological tissues during proton irradiation: a preliminary study, Phys. Med. Biol. 54 (2009) 731-743. https://doi.org/10.1088/0031-9155/54/3/017
  3. J.M. Verburg, J. Seco, Proton range verification through prompt gamma-ray spectroscopy, Phys. Med. Biol. 59 (2014) 7089-7106. https://doi.org/10.1088/0031-9155/59/23/7089
  4. L. Kelleter, A. Wronska, J. Besuglow, A. Konefal, K. Laihem, J. Leidner, A. Magiera, K. Parodi, K. Rusiecka, A. Stahl, T. Tessonnier, Spectroscopic study of prompt-gamma emission for range verification in proton therapy, Phys. Med. 34 (2017) 7-17. https://doi.org/10.1016/j.ejmp.2017.01.003
  5. D. Kim, H. Yim, J.-W. Kim, Pinhole camera measurements of prompt gamma-rays for detection of beam range variation in proton therapy, J. Kor. Phys. Soc. 55 (2009) 1673-1676. https://doi.org/10.3938/jkps.55.1673
  6. M. Moteabbed, S. Espana, H. Paganetti, Monte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapy, Phys. Med. Biol. 56 (2011) 1063-1082. https://doi.org/10.1088/0031-9155/56/4/012
  7. J. Krimmer, M. Chevallier, J. Constanzo, D. Dauvergne, M. DeRydt, G. Dedes, N. Freud, P. Henriquet, C. LaTessa, J.M. Letang, R. Pleska c, M. Pinto, C. Ray, V. Reithinger, M.H. Richard, I. Rinaldi, F. Roellinghoff, C. Schuy, E. Testa, M. T esta, Collimated prompt gamma TOF measurements with multi-slit multi-detector configurations, J. Instrum. 10 (2015), P01011-P01011. https://doi.org/10.1088/1748-0221/10/01/P01011
  8. R.W. Todd, J.M. Nightingale, D.B. Everett, A proposed gamma camera, Nature 251 (1974) 132-134. https://doi.org/10.1038/251132a0
  9. G.W. Phillips, Gamma-ray imaging with Compton cameras, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 99 (1995) 674-677. https://doi.org/10.1016/0168-583X(95)80085-9
  10. C. Golnik, F. Hueso-Gonzalez, A. Muller, P. Dendooven, W. Enghardt, F. Fiedler, T. Kormoll, K. Roemer, J. Petzoldt, A. Wagner, G. Pausch, Range assessment in particle therapy based on prompt γ-ray timing measurements, Phys. Med. Biol. 59 (2014) 5399-5422. https://doi.org/10.1088/0031-9155/59/18/5399
  11. J.M. Verburg, J. Seco, Proton range verification through prompt gamma-ray spectroscopy, Phys. Med. Biol. 59 (2014) 7089-7106. https://doi.org/10.1088/0031-9155/59/23/7089
  12. J. Krimmer, G. Angellier, L. Balleyguier, D. Dauvergne, N. Freud, J. Herault, J.M. Letang, H. Mathez, M. Pinto, E. Testa, Y. Zoccarato, A cost-effective monitoring technique in particle therapy via uncollimated prompt gamma peak integration, Appl. Phys. Lett. 110 (2017), 154102.
  13. P. Solevi, E. Munoz, C. Solaz, M. Trovato, P. Dendooven, J.E. Gillam, C. Lacasta, J.F. Oliver, M. Rafecas, I. Torres-Espallardo, G. Llosa, Performance of MACACO Compton telescope for ion-beam therapy monitoring: first test with proton beams, Phys. Med. Biol. 61 (2016) 5149-5165. https://doi.org/10.1088/0031-9155/61/14/5149
  14. E. Munoz, J. Barrio, A. Etxebeste, P.G. Ortega, C. Lacasta, J.F. Oliver, C. Solaz, G. Llosa, Performance evaluation of MACACO: a multilayer Compton camera, Phys. Med. Biol. 62 (2017) 7321.
  15. S. Aldawood, P.G. Thirolf, A. Miani, M. Bohmer, G. Dedes, R. Gernhauser, C. Lang, S. Liprandi, L. Maier, T. Marinsek, M. Mayerhofer, D.R. Schaart, I. Valencia Lozano, K. Parodi, Development of a Compton camera for prompt-gamma medical imaging, Radiat. Phys. Chem. 140 (2017) 190-197. https://doi.org/10.1016/j.radphyschem.2017.01.024
  16. A. Koide, J. Kataoka, T. Masuda, S. Mochizuki, T. Taya, K. Sueoka, L. Tagawa, K. Fujieda, T. Maruhashi, T. Kurihara, T. Inaniwa, Precision imaging of 4.4 MeV gamma rays using a 3-D position sensitive Compton camera, Sci. Rep. 25 (2018) 8116.
  17. I. Valencia Lozano, G. Dedes, S. Peterson, D. Mackin, A. Zoglauer, S. Beddar, S. Avery, J. Polf, K. Parodi, Comparison of reconstructed prompt gamma emissions using maximum likelihood estimation and origin ensemble algorithms for a Compton camera system tailored to proton range monitoring, Z. Med. Phys. 22 (2022) S0939-S3889.
  18. E. Draeger, S. Peterson, D. Mackin, H. Chen, S. Beddar, J.C. Polf, Feasibility studies of a new event selection method to improve spatial resolution of Compton imaging for medical applications, IEEE Trans. Radiat. Plasma Med. Sci. 1 (2017) 358-367. https://doi.org/10.1109/TRPMS.2017.2703095
  19. T. Ikeda, A. Takada, M. Abe, K. Yoshikawa, M. Tsuda, S. Ogio, S. Sonoda, Y. Mizumura, Y. Yoshida, T. Tanimori, Development of convolutional neural networks for an electron-tracking Compton camera, Prog. Theor. Exp. Phys. 2021 (2021) 83-84.
  20. H.M. Huang, C.C. Liu, M.L. Jan, M.W. Lee, A low-count reconstruction algorithm for Compton-based prompt gamma imaging, Phys. Med. Biol. 63 (2018).
  21. N. Kohlhase, T. Wegener, M. Schaar, A. Bolke, A. Etxebeste, D. Sarrut, M. Rafecas, Capability of MLEM and OE to detect range shifts with a Compton camera in particle therapy, IEEE Trans. Radiat. Plasma Med. Sci. 4 (2020) 233-242. https://doi.org/10.1109/TRPMS.2019.2937675
  22. Z. Yao, Y. Xiao, Z. Chen, B. Wang, Q. Hou, Compton-based prompt gamma imaging using ordered origin ensemble algorithm with resolution recovery in proton therapy, Sci. Rep. 9 (2019) 1133.
  23. H.M. Huang, Monte Carlo evaluation of a LYSO-based Compton camera using two origin ensemble algorithms with resolution recovery, Med. Phys. 48 (2021) 5300-5310. https://doi.org/10.1002/mp.15092
  24. Z. Yao, Y. Yuan, J. Wu, X. Liu, Y. Xiao, Rapid Compton camera imaging for source terms investigation in the nuclear decommissioning with a subset-driven origin ensemble algorithm, Radiat. Phys. Chem. 197 (2022), 110133.
  25. V. Maxim, X. Lojacono, E. Hilaire, J. Krimmer, E. Testa, D. Dauvergne, I. Magnin, R. Prost, Probabilistic models and numerical calculation of system matrix and sensitivity in list-mode MLEM 3D reconstruction of Compton camera images, Phys. Med. Biol. 61 (2016) 243-264. https://doi.org/10.1088/0031-9155/61/1/243
  26. E. Munoz, J. Barrio, J. Bernabeu, A. Etxebeste, C. Lacasta, G. Llosa, A. Ros, J. Roser, J.F. Oliver, Study and comparison of different sensitivity models for a two-plane Compton camera, Phys. Med. Biol. 63 (2018).
  27. A. Sitek, Representation of photon limited data in emission tomography using origin ensembles, Phys. Med. Biol. 53 (2008) 3201-3216. https://doi.org/10.1088/0031-9155/53/12/009
  28. A. Andreyev, A. Celler, I. Ozsahin, A. Sitek, Resolution recovery for Compton camera using origin ensemble algorithm, Med. Phys. 43 (2016) 4866-4876. https://doi.org/10.1118/1.4959551
  29. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gomez Cadenas, I. Gonzalez, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampen, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O'Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. DiSalvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche, Geant4da simulation toolkit, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 506 (2003) 250-303. https://doi.org/10.1016/S0168-9002(03)01368-8
  30. S. Jan, G. Santin, D. Strul, S. Staelens, K. Assie, D. Autret, S. Avner, R. Barbier, M. Bardies, P.M. Bloom field, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A.F. Chatziioannou, Y. Choi, Y.H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S.J. Glick, C.J. Groiselle, D. Guez, P.F. Honore, S. Kerhoas-Cavata, A.S. Kirov, V. Kohli, M. Koole, M. Krieguer, D.J. van derLaan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M.C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F.R. Rannou, M. Rey, D.R. Schaart, C.R. Schmidtlein, L. Simon, T.Y. Song, J.M. Vieira, D. Visvikis, R. Van deWalle, E. Wieers, C. Morel, GATE: a simulation toolkit for PET and SPECT, Phys. Med. Biol. 49 (2004) 4543-4561. https://doi.org/10.1088/0031-9155/49/19/007
  31. L. Grevillot, T. Frisson, N. Zahra, D. Bertrand, F. Stichelbaut, N. Freud, D. Sarrut, Optimization of GEANT4 settings for proton pencil beam scanning simulations using GATE, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268 (2010) 3295-3305. https://doi.org/10.1016/j.nimb.2010.07.011
  32. F. Hueso-Gonzalez, F. Fiedler, C. Golnik, T. Kormoll, G. Pausch, J. Petzoldt, K.E. Romer, W. Enghardt, Compton camera and prompt famma ray timing: two methods for in vivo range assessment in proton therapy, Front. Oncol. 6 (2016) 80.
  33. M. Thiel, W.M. Doring, V. Dormenev, P. Drexler, R.W. Novotny, M. Rost, A. Thomas, High-energy photon detection with LYSO crystals, IEEE Trans. Nucl. Sci. 55 (2008) 1425-1429. https://doi.org/10.1109/TNS.2008.922838
  34. M. Testa, M. Bajard, M. Chevallier, D. Dauvergne, N. Freud, P. Henriquet, S. Karkar, F. LeFoulher, J.M. Letang, R. Plescak, C. Ray, M.-H. Richard, D. Schardt, E. Testa, Real-time monitoring of the Bragg-peak position in ion therapy by means of single photon detection, Radiat. Environ. Biophys. 49 (2010) 337-343. https://doi.org/10.1007/s00411-010-0276-2
  35. A.H. Compton, A quantum theory of the Scattering of X-rays by light elements, Phys. Rev. 21 (1923) 483-502. https://doi.org/10.1103/PhysRev.21.483
  36. A. Sitek, Data analysis in emission tomography using emission-count posteriors, Phys. Med. Biol. 57 (2012) 6779-6795. https://doi.org/10.1088/0031-9155/57/21/6779
  37. D. MacKin, S. Peterson, S. Beddar, J. Polf, Evaluation of a stochastic reconstruction algorithm for use in Compton camera imaging and beam range verification from secondary gamma emission during proton therapy, Phys. Med. Biol. 57 (2012) 3537-3553. https://doi.org/10.1088/0031-9155/57/11/3537
  38. E. Draeger, D. Mackin, S. Peterson, H. Chen, S. Avery, S. Beddar, J.C. Polf, 3D prompt gamma imaging for proton beam range verification, Phys. Med. Biol. 63 (2018).
  39. A. Sitek, Reconstruction of emission tomography data using origin ensembles, IEEE Trans. Med. Imag. 30 (2011) 946-956. https://doi.org/10.1109/TMI.2010.2098036
  40. A. Zheng, Z. Yao, Y. Xiao, GPU accelerated stochastic origin ensemble method with list-mode data for Compton camera imaging in proton therapy, IEEE Trans. Radiat. Plasma Med. Sci. 4 (2020) 243-252. https://doi.org/10.1109/TRPMS.2019.2929423
  41. P.G. Ortega, I. Torres-Espallardo, F. Cerutti, A. Ferrari, J.E. Gillam J.E, C. Lacasta, G. Llosa, J.F. Oliver, P.R. Sala, P. Solevi, M. Rafecas, Noise evaluation of Compton camera imaging for proton therapy, Phys. Med. Biol. 60 (2015) 1845-1863. https://doi.org/10.1088/0031-9155/60/5/1845
  42. D. Mackin, J. Polf, S. Peterson, S. Beddar, The effects of Doppler broadening and detector resolution on the performance of three-stage Compton cameras, Med. Phys. 40 (2013), 12402.
  43. E. Hilaire, D. Sarrut, F. Peyrin, V. Maxim V, Proton therapy monitoring by Compton imaging: influence of the large energy spectrum of the prompt-γ radiation, Phys. Med. Biol. 61 (2016) 3127-3146. https://doi.org/10.1088/0031-9155/61/8/3127