• Title/Summary/Keyword: Imagery information processing

Search Result 143, Processing Time 0.019 seconds

Alsat-2B/Sentinel-2 Imagery Classification Using the Hybrid Pigeon Inspired Optimization Algorithm

  • Arezki, Dounia;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.690-706
    • /
    • 2021
  • Classification is a substantial operation in data mining, and each element is distributed taking into account its feature values in the corresponding class. Metaheuristics have been widely used in attempts to solve satellite image classification problems. This article proposes a hybrid approach, the flower pigeons-inspired optimization algorithm (FPIO), and the local search method of the flower pollination algorithm is integrated into the pigeon-inspired algorithm. The efficiency and power of the proposed FPIO approach are displayed with a series of images, supported by computational results that demonstrate the cogency of the proposed classification method on satellite imagery. For this work, the Davies-Bouldin Index is used as an objective function. FPIO is applied to different types of images (synthetic, Alsat-2B, and Sentinel-2). Moreover, a comparative experiment between FPIO and the genetic algorithm genetic algorithm is conducted. Experimental results showed that GA outperformed FPIO in matters of time computing. However, FPIO provided better quality results with less confusion. The overall experimental results demonstrate that the proposed approach is an efficient method for satellite imagery classification.

Strong Uncorrelated Transform Applied to Spatially Distant Channel EEG Data

  • Kim, Youngjoo;Park, Cheolsoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.97-102
    • /
    • 2015
  • In this paper, an extension of the standard common spatial pattern (CSP) algorithm using the strong uncorrelated transform (SUT) is used in order to extract the features for an accurate classification of the left- and right-hand motor imagery tasks. The algorithm is designed to analyze the complex data, which can preserve the additional information of the relationship between the two electroencephalogram (EEG) data from distant channels. This is based on the fact that distant regions of the brain are spatially distributed spatially and related, as in a network. The real-world left- and right-hand motor imagery EEG data was acquired through the Physionet database and the support vector machine (SVM) was used as a classifier to test the proposed method. The results showed that extracting the features of the pair-wise channel data using the strong uncorrelated transform complex common spatial pattern (SUTCCSP) provides a higher classification rate compared to the standard CSP algorithm.

Estimation of Brain Connectivity during Motor Imagery Tasks using Noise-Assisted Multivariate Empirical Mode Decomposition

  • Lee, Ki-Baek;Kim, Ko Keun;Song, Jaeseung;Ryu, Jiwoo;Kim, Youngjoo;Park, Cheolsoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1812-1824
    • /
    • 2016
  • The neural dynamics underlying the causal network during motor planning or imagery in the human brain are not well understood. The lack of signal processing tools suitable for the analysis of nonlinear and nonstationary electroencephalographic (EEG) hinders such analyses. In this study, noise-assisted multivariate empirical mode decomposition (NA-MEMD) is used to estimate the causal inference in the frequency domain, i.e., partial directed coherence (PDC). Natural and intrinsic oscillations corresponding to the motor imagery tasks can be extracted due to the data-driven approach of NA-MEMD, which does not employ predefined basis functions. Simulations based on synthetic data with a time delay between two signals demonstrated that NA-MEMD was the optimal method for estimating the delay between two signals. Furthermore, classification analysis of the motor imagery responses of 29 subjects revealed that NA-MEMD is a prerequisite process for estimating the causal network across multichannel EEG data during mental tasks.

Texture Image Fusion on Wavelet Scheme with Space Borne High Resolution Imagery: An Experimental Study

  • Yoo, Hee-Young;Lee , Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.243-252
    • /
    • 2005
  • Wavelet transform and its inverse processing provide the effective framework for data fusion. The purpose of this study is to investigate applicability of wavelet transform using texture images for the urban remote sensing application. We tried several experiments regarding image fusion by wavelet transform and texture imaging using high resolution images such as IKONOS and KOMPSAT EOC. As for texture images, we used homogeneity and ASM (Angular Second Moment) images according that these two types of texture images reveal detailed information of complex features of urban environment well. To find out the useful combination scheme for further applications, we performed DWT(Discrete Wavelet Transform) and IDWT(Inverse Discrete Wavelet Transform) using texture images and original images, with adding edge information on the fused images to display texture-wavelet information within edge boundaries. The edge images were obtained by the LoG (Laplacian of Gaussian) processing of original image. As the qualitative result by the visual interpretation of these experiments, the resultant image by each fusion scheme will be utilized to extract unique details of surface characterization on urban features around edge boundaries.

Image classification methods applicable multiple satellite imagery

  • Jeong, Jae-Jun;Kim, Kyung-Ok;Lee, Jong-Hun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.81-81
    • /
    • 2002
  • Classification is considered as one of the processes of extracting attributes from satellite imagery and is one of the usual functions in the commercial satellite image processing software. Accuracy of classification plays a key role in deciding the usage of its results. Many tremendous efforts far the higher accuracy have been done in such fields; training area selection, classification algorithm. Our research is one of these effort in different manners. In this research, we conduct classification using multiple satellite image data and evidential approach. We statistically consider the posterior probabilities and certainty in maximum likelihood classification and methodologically Dempster's orthogonal sums. Unfortunately, accuracy for the whole data sets has not assessed yet, but accuracy assessments in training fields and check fields shows accuracy improvement over 10% in overall accuracy and over 0.1 in kappa index.

  • PDF

Land Suitability Analysis using GIS and Satellite Imagery

  • Yoo, Hwan-Hee;Kim, Seong-Sam;Ochirbae, Sukhee;Cho, Eun-Rae;Park, Hong-Gi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.499-505
    • /
    • 2007
  • A method of improving the correctness and confidence in land use classification as well as urban spatial structure analysis of local governments using GIS and satellite imagery is suggested. This study also compares and analyzes LSAS (Land Suitability Assessment System) results using two approaches-LSAS with priority classification, and LSAS using standard estimation factors without priority classification. The conclusions that can be drawn from this study are as follows. First, a method of maintaining up-to-date local government data by updating the LSAS database using high-resolution satellite imagery is suggested. Second, to formulate a scientific and reasonable land use plan from the viewpoint of territory development and urban management, a method of simultaneously processing the two described approaches is suggested. Finally, LSAS was constructed by using varieties of land information such as the cadastral map, the digital topographic map, varieties of thematic maps, and official land price data, and expects to utilize urban management plan establishment widely and effectively through regular data updating and problem resolution of data accuracy.

Development of HDF Browser for the Utilization of EOC Imagery

  • Seo, Hee-Kyung;Ahn, Seok-Beom;Park, Eun-Chul;Hahn, Kwang-Soo;Choi, Joon-Soo;Kim, Choen
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.61-69
    • /
    • 2002
  • The purpose of Electro-Optical Camera (EOC), the primary payload of KOMPSAT-1, is to collect high resolution visible imagery of the Earth including Korean Peninsula. EOC images will be distributed to the public or many user groups including government, public corporations, academic or research institutes. KARI will offer the online service to the users through internet. Some application, e.g., generation of Digital Elevation Model (DEM), needs a secondary data such as satellite ephemeris data, attitude data to process the EOC imagery. EOC imagery with these ancillary information will be distributed in a file of Hierarchical Data Format (HDF) file formal. HDF is a physical file format that allows storage of many different types of scientific data including images, multidimensional data arrays, record oriented data, and point data. By the lack of public domain softwares supporting HDF file format, many public users may not access EOC data without difficulty. The purpose of this research is to develop a browsing system of EOC data for the general users not only for scientists who are the main users of HDF. The system is PC-based and huts user-friendly interface.

Development of Feature-based Classification Software for High Resolution Satellite Imagery (고해상도 위성영상의 분류를 위한 형상 기반 분류 소프트웨어 개발)

  • Jeong, Soo;Lee, Chang-No
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.2 s.29
    • /
    • pp.53-59
    • /
    • 2004
  • In this paper, we investigated a method for feature-based classification to develop a software which is suitable for the classification of high resolution satellite imagery. We developed algorithms for image segmentation and fuzzy-based classification required for feature-based classification and designed user interfaces to support interaction with user, considering various elements required for the feature-based classification. Evaluation of the software was accomplished using real image. Classification results were compared and analysed with eCognition software which is unique commercial software for feature-based classification. The classification results from both softwares showed essentially same results and the developed software showed better result in the processing speed.

  • PDF

Evaluation on extraction of pixel-based solar zenith and offnadir angle for high spatial resolution satellite imagery (고해상도 위성영상의 화소기반 태양 천정각 및 촬영각 추출 및 평가)

  • Seong, Seon Kyeong;Seo, Doo Chun;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.563-569
    • /
    • 2021
  • With the launch of Compact Advanced Satellite 500 series of various characteristics and the operation of KOMPSAT-3/3A, uses of high-resolution satellite images have been continuously increased. Especially, in order to provide satellite images in the form of ARD (Analysis Ready Data), various pre-processing such as geometric correction and radiometric correction have been developed. For pre-processing of high spatial satellite imagery, auxiliary information, such as solar zenith, solar azimuth and offnadir angle, should be required. However, most of the high-resolution satellite images provide the solar zenith and nadir angle for the entire image as a single variable. In this paper, the solar zenith and offnadir angle corresponding to each pixel of the image were calculated using RFM (Rational Function Model) and auxiliary information of the image, and the quality of extracted information were evaluated. In particular, for the utilization of pixel-based solar zenith and offnadir angle, pixel-based auxiliary data were applied in calculating the top of atmospheric reflectance, and comparative evaluation with a single constant-based top of atmospheric reflectance was performed. In the experiments using various satellite imagery, the pixel-based solar zenith and offnadir angle information showed a similar tendency to the auxiliary information of satellite sensor, and it was confirmed that the distortion was reduced in the calculated reflectance in the top of atmospheric reflectance.

Study on the Ship Detection Method Using SAR Imagery (SAR 영상을 이용한 선박탐지에 관한 연구)

  • Kwon, Seung-Joon;Shin, Sung-Woong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.131-139
    • /
    • 2009
  • The existing vessel monitoring system using the ground surveillance radar has a difficulty in monitoring ships continuously due to the limited range of detecting ships. For resolving this problem, we carry out a research on ship detection which is to be the core technology of vessel monitoring system for ocean monitoring using SAR imagery. There are two different methods of detecting ships in SAR imagery: detection of the ship target itself and detection of the ship wake. In this paper, we mainly focus on algorithms which detect the ship itself, and also present the accuracy test after extracting positional and directional figures of the ships. After rectifying input SAR imagery using polynomial transformation, we use Wiener filter to remove speckle noises. A labeling technique and morphological filtering in conjunction with Otsu's method are used to automatically detect the ships based on the image processing domain. For ground truth data, information from a radar system is used, which allows assessing the accuracy of the proposed method. The results show that the proposed method has the high potential in automatically detecting the ships and its positional/directional figures in a fast way.

  • PDF