• Title/Summary/Keyword: Image-typed ECG

Search Result 2, Processing Time 0.008 seconds

CNN Model-based Arrhythmia Classification using Image-typed ECG Data (이미지 타입의 ECG 데이터를 사용한 CNN 모델 기반 부정맥 분류)

  • Yeon-Suk Bang;Myung-Soo Jang;Yousik Hong;Sang-Suk Lee;Jun-Sang Yu;Woo-Beom Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.205-212
    • /
    • 2023
  • Among cardiac diseases, arrhythmias can lead to serious complications such as stroke, heart attack, and heart failure if left untreated, so continuous and accurate ECG monitoring is crucial for clinical care. However, the accurate interpretation of electrocardiogram (ECG) data is entirely dependent on medical doctors, which requires additional time and cost. Therefore, this paper proposes an arrhythmia recognition module for the purpose of developing a medical platform through the analysis of abnormal pulse waveforms based on Lifelogs. The proposed method is to convert ECG data into image format instead of time series data, apply visual pattern recognition technology, and then detect arrhythmia using CNN model. In order to validate the arrhythmia classification of the CNN model by image type conversion of ECG data proposed in this paper, the MIT-BIH arrhythmia dataset was used, and the result showed an accuracy of 97%.

A Study on Wearable Emotion Monitoring System Under Natural Conditions Applying Noncontact Type Inductive Sensor (자연 상태에서의 인간감성 평가를 위한 비접촉식 인덕티브 센싱 기반의 착용형 센서 연구)

  • Hyun-Seung Cho;Jin-Hee Yang;Sang-Yeob Lee;Jeong-Whan Lee;Joo-Hyeon Lee;Hoon Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.3
    • /
    • pp.149-160
    • /
    • 2023
  • This study develops a time-varying system-based noncontact fabric sensor that can measure cerebral blood-flow signals to explore the possibility of brain blood-signal detection and emotional evaluation. The textile sensor was implemented as a coil-type sensor by combining 30 silver threads of 40 deniers and then embroidering it with the computer machine. For the cerebral blood-flow measurement experiment, subjects were asked to attach a coil-type sensor to the carotid artery area, wear an electrocardiogram (ECG) electrode and a respiration (RSP) measurement belt. In addition, Doppler ultrasonography was performed using an ultrasonic diagnostic device to measure the speed of blood flow. The subject was asked to wear Meta Quest 2, measure the blood-flow change signal when viewing the manipulated image visual stimulus, and fill out an emotional-evaluation questionnaire. The measurement results show that the textile-sensor-measured signal also changes with a change in the blood-flow rate signal measured using the Doppler ultrasonography. These findings verify that the cerebral blood-flow signal can be measured using a coil-type textile sensor. In addition, the HRV extracted from ECG and PLL signals (textile sensor signals) are calculated and compared for emotional evaluation. The comparison results show that for the change in the ratio because of the activation of the sympathetic and parasympathetic nervous systems due to visual stimulation, the values calculated using the textile sensor and ECG signals tend to be similar. In conclusion, a the proposed time-varying system-based coil-type textile sensor can be used to study changes in the cerebral blood flow and monitor emotions.