• 제목/요약/키워드: Image-guided

검색결과 378건 처리시간 0.024초

영상유도 방사선 치료(IGRT)에 따른 정상 조직의 추가 피폭에 대한 연구 (A Study on the Additional Absorbed Dose of Normal Tissues by Image Guided Radiation Therapy(IGRT))

  • 김가중;류준민;최준구;홍동희
    • 한국콘텐츠학회논문지
    • /
    • 제16권1호
    • /
    • pp.75-81
    • /
    • 2016
  • 최근 방사선 치료 분야에서는 다양한 영상유도 방사선 치료(IGRT) 장치들을 이용한 환자 셋업으로 고도의 정밀성이 보장된 치료가 가능해 졌다. 그러나 환자의 정상 조직에 받는 추가 선량 또한 더불어 증가되고 있다. 이에 본 연구에서는 영상유도 방사선 치료 장치 중 OBI, CBCT, ExacTrac를 이용한 환자 셋업에 주변 정상 조직에 받는 피폭선량을 측정하였다. 결과 팬텀 중심부의 선량이 CBCT의 경우 두부 12.57 mGy, 흉부 20.82 mGy, 복부 82.93 mGy, 골반부위 52.70 mGy로 측정되었으며 OBI는 0.76 ~ 8.58 mGy, ExacTrac의 경우 0.14 ~ 0.63 mGy로 CBCT의 피폭선량이 다른 장비에 비해 월등히 높게 나타나는 것을 알 수 있었다. 표면 선량의 경우에서도 CBCT가 다른 장비에 비해 높게 나타났으나 입사 피부표면 선량(Enterance skin dose)의 경우 OBI도 CBCT의 피폭선량과 거의 비슷한 흡수선량이 측정 되었다.

Surgical Management Options for Trigeminal Neuralgia

  • Lunsford, L. Dade;Niranjan, Ajay;Kondziolka, Douglas
    • Journal of Korean Neurosurgical Society
    • /
    • 제41권6호
    • /
    • pp.359-366
    • /
    • 2007
  • Trigeminal neuralgia is a condition associated with severe episodic lancinating facial pain subject to remissions and relapses. Trigeminal neuralgia is often associated with blood vessel cross compression of the root entry zone or more rarely with demyelinating diseases and occasionally with direct compression by neoplasms of the posterior fossa. If initial medical management fails to control pain or is associated with unacceptable side effects, a variety of surgical procedures offer the hope for long-lasting pain relief or even cure. For patients who are healthy without significant medical co-morbidities, direct microsurgical vascular decompression [MVD] offers treatment that is often definitive. Other surgical options are effective for elderly patients not suitable for MVD. Percutaneous retrogasserian glycerol rhizotomy is a minimally invasive technique that is based on anatomic definition of the trigeminal cistern followed by injection of anhydrous glycerol to produce a weak neurolytic effect on the post-ganglionic fibers. Other percutaneous management strategies include radiofrequency rhizotomy and balloon compression. More recently, stereotactic radiosurgery has been used as a truly minimally invasive strategy. It also is anatomically based using high resolution MRI to define the retrogasserian target. Radiosurgery provides effective symptomatic relief in the vast majority of patients, especially those who have never had prior surgical procedures. For younger patients, we recommend microvascular decompression. For patients with severe exacerbations of their pain and who need rapid response to treatment, we suggest glycerol rhizotomy. For other patients, gamma knife radiosurgery represents an effective management strategy with excellent preservation of existing facial sensation.

A Novel Image Dehazing Algorithm Based on Dual-tree Complex Wavelet Transform

  • Huang, Changxin;Li, Wei;Han, Songchen;Liang, Binbin;Cheng, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권10호
    • /
    • pp.5039-5055
    • /
    • 2018
  • The quality of natural outdoor images captured by visible camera sensors is usually degraded by the haze present in the atmosphere. In this paper, a fast image dehazing method based on visible image and near-infrared fusion is proposed. In the proposed method, a visible and a near-infrared (NIR) image of the same scene is fused based on the dual-tree complex wavelet transform (DT-CWT) to generate a dehazed color image. The color of the fusion image is regulated through haze concentration estimated by dark channel prior (DCP). The experiment results demonstrate that the proposed method outperforms the conventional dehazing methods and effectively solves the color distortion problem in the dehazing process.

NIR Fluorescence Imaging Systems with Optical Packaging Technology

  • 양우태;조상욱;정명영;최학수
    • 마이크로전자및패키징학회지
    • /
    • 제21권4호
    • /
    • pp.25-31
    • /
    • 2014
  • Bioimaging has advanced the field of nanomedicine, drug delivery, and tissue engineering by directly visualizing the dynamic mechanism of diagnostic agents or therapeutic drugs in the body. In particular, wide-field, planar, near-infrared (NIR) fluorescence imaging has the potential to revolutionize human surgery by providing real-time image guidance to surgeons for target tissues to be resected and vital tissues to be preserved. In this review, we introduce the principles of NIR fluorescence imaging and analyze currently available NIR fluorescence imaging systems with special focus on optical source and packaging. We also introduce the evolution of the FLARE intraoperative imaging technology as an example for image-guided surgery.

Image-guided Stereotactic Neurosurgery: Practices and Pitfalls

  • Jung, Na Young;Kim, Minsoo;Kim, Young Goo;Jung, Hyun Ho;Chang, Jin Woo;Park, Yong Gou;Chang, Won Seok
    • Journal of International Society for Simulation Surgery
    • /
    • 제2권2호
    • /
    • pp.58-63
    • /
    • 2015
  • Image-guided neurosurgery (IGN) is a technique for localizing objects of surgical interest within the brain. In the past, its main use was placement of electrodes; however, the advent of computed tomography has led to a rebirth of IGN. Advances in computing techniques and neuroimaging tools allow improved surgical planning and intraoperative information. IGN influences many neurosurgical fields including neuro-oncology, functional disease, and radiosurgery. As development continues, several problems remain to be solved. This article provides a general overview of IGN with a brief discussion of future directions.

An Image-guided Radiosurgery for the Treatment of Metastatic Bone Tumors using the CyberKnife Robotic System

  • Cho, Chul-Koo
    • 대한골관절종양학회지
    • /
    • 제13권1호
    • /
    • pp.14-21
    • /
    • 2007
  • Bone is a common site for metastatic spread from many kinds of malignancies. The morbidity associated with this metastatic spread can be significant, including severe pain. When it comes to spinal metastasis, occupying nearly 40% of skeletal metastases, the risks of complications, such as vertebral body collapse, nerve root impingement, or spinal cord compression, are also significant. Because of the necessity of preserving the integrity of the spinal column and the proximity of critical structures, surgical treatment has limitations when durable local control is desired. Radiotherapy, therefore, is often used as an adjunct treatment or as a sole treatment. A considerable limitation of standard radiotherapy is the reported recurrence rate or ineffective palliation of pain, either clinically or symptomatically. This may be due to limited radiation doses to tumor itself because of the proximity of critical structures. CyberKnife is an image-guided robotic radiosurgical system. The image guidance system includes a kilovoltage X-ray imaging source and amorphous silica detectors. The radiation delivery device is a mobile X-band linear accelerator (6 MV) mounted on a robotic arm. Highly conformal fields and hypofractionated radiotherapy schedules are increasingly being used as a means to achieve biologic dose escalation for body tumors. Therefore, we can give much higher doses to the targeted tumor volume with minimizing doses to the surrounding critical structures, resulting in more effective local control and less severe side effects, compared to conventional fractionated radiotherapy. A description of this technology and a review of clinical applications to bone metastases are detailed herein.

  • PDF

Evaluation of Denoising Filters Based on Edge Locations

  • Seo, Suyoung
    • 대한원격탐사학회지
    • /
    • 제36권4호
    • /
    • pp.503-513
    • /
    • 2020
  • This paper presents a method to evaluate denoising filters based on edge locations in their denoised images. Image quality assessment has often been performed by using structural similarity (SSIM). However, SSIM does not provide clearly the geometric accuracy of features in denoised images. Thus, in this paper, a method to localize edge locations with subpixel accuracy based on adaptive weighting of gradients is used for obtaining the subpixel locations of edges in ground truth image, noisy images, and denoised images. Then, this paper proposes a method to evaluate the geometric accuracy of edge locations based on root mean squares error (RMSE) and jaggedness with reference to ground truth locations. Jaggedness is a measure proposed in this study to measure the stability of the distribution of edge locations. Tested denoising filters are anisotropic diffusion (AF), bilateral filter, guided filter, weighted guided filter, weighted mean of patches filter, and smoothing filter (SF). SF is a simple filter that smooths images by applying a Gaussian blurring to a noisy image. Experiments were performed with a set of simulated images and natural images. The experimental results show that AF and SF recovered edge locations more accurately than the other tested filters in terms of SSIM, RMSE, and jaggedness and that SF produced better results than AF in terms of jaggedness.

마스크-보조 어텐션 기법을 활용한 항공 영상에서의 퓨-샷 의미론적 분할 (Few-shot Aerial Image Segmentation with Mask-Guided Attention)

  • 권형준;송태용;이태영;안종식;손광훈
    • 한국멀티미디어학회논문지
    • /
    • 제25권5호
    • /
    • pp.685-694
    • /
    • 2022
  • The goal of few-shot semantic segmentation is to build a network that quickly adapts to novel classes with extreme data shortage regimes. Most existing few-shot segmentation methods leverage single or multiple prototypes from extracted support features. Although there have been promising results for natural images, these methods are not directly applicable to the aerial image domain. A key factor in few-shot segmentation on aerial images is to effectively exploit information that is robust against extreme changes in background and object scales. In this paper, we propose a Mask-Guided Attention module to extract more comprehensive support features for few-shot segmentation in aerial images. Taking advantage of the support ground-truth masks, the area correlated to the foreground object is highlighted and enables the support encoder to extract comprehensive support features with contextual information. To facilitate reproducible studies of the task of few-shot semantic segmentation in aerial images, we further present the few-shot segmentation benchmark iSAID-, which is constructed from a large-scale iSAID dataset. Extensive experimental results including comparisons with the state-of-the-art methods and ablation studies demonstrate the effectiveness of the proposed method.

AdaMM-DepthNet: Unsupervised Adaptive Depth Estimation Guided by Min and Max Depth Priors for Monocular Images

  • ;김문철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.252-255
    • /
    • 2020
  • Unsupervised deep learning methods have shown impressive results for the challenging monocular depth estimation task, a field of study that has gained attention in recent years. A common approach for this task is to train a deep convolutional neural network (DCNN) via an image synthesis sub-task, where additional views are utilized during training to minimize a photometric reconstruction error. Previous unsupervised depth estimation networks are trained within a fixed depth estimation range, irrespective of its possible range for a given image, leading to suboptimal estimates. To overcome this suboptimal limitation, we first propose an unsupervised adaptive depth estimation method guided by minimum and maximum (min-max) depth priors for a given input image. The incorporation of min-max depth priors can drastically reduce the depth estimation complexity and produce depth estimates with higher accuracy. Moreover, we propose a novel network architecture for adaptive depth estimation, called the AdaMM-DepthNet, which adopts the min-max depth estimation in its front side. Intensive experimental results demonstrate that the adaptive depth estimation can significantly boost up the accuracy with a fewer number of parameters over the conventional approaches with a fixed minimum and maximum depth range.

  • PDF

영상유도 방사선 치료를 위한 디지털 단층영상합성법의 촬영조건 최적화에 관한 연구 (Optimizing Imaging Conditions in Digital Tomosynthesis for Image-Guided Radiation Therapy)

  • 윤한빈;김진성;조민국;장선영;송영재;김호경
    • 한국의학물리학회지:의학물리
    • /
    • 제21권3호
    • /
    • pp.281-290
    • /
    • 2010
  • 최근 디지털 단층영상합성법을 영상유도 방사선 치료에 활용하기 위한 연구가 활발히 시도되고 있다. 적은 수의 투사영상으로 삼차원 영상재구성이 가능하기 때문에 환자에 대한 피폭선량을 줄일 수 있으며, 환자의 움직임을 최소화할 수 있는 장점이 있기 때문이다. 그러나 단층영상의 화질이 스캔 각도(${\beta}_{scan}$) 및 사용한 투사영상의 수 등 촬영조건에 크게 의존하는 단점이 있다. 본 연구에서는 필터링 후 역투사법을 이용한 디지털 단층영상합성의 구현에 대해 자세히 논하였으며, 이에 대한 최적 촬영조건에 대해 살펴 보았다. 이를 위해 시스템 성능을 신호 대 잡음비, 잔상퍼짐함수, 연산횟수를 조합한 이득함수로 정의하였으며, 다양한 촬영조건에 대해 실험을 통해 각 지표를 구한 후 평가하였다. 평가 결과 및 분석으로부터 큰 단위 스캔 각도(${\Delta}{\beta}$)로 60도 이상의 넓은 범위에 걸쳐 스캔을 할수록 높은 화질의 단층영상을 얻을 수 있다는 결론을 얻었다. 대략적으로 시스템 성능이 $\sqrt{{\Delta}{\beta}}{\times}{\beta}^{2.5}_{scan}$에 비례하였다. 만약 각 평가지표에 명확한 가중치를 부여할 수 있다면 보다 엄밀하고 구체적인 촬영조건을 구할 수 있을 것이다.