• Title/Summary/Keyword: Image-Based Simulation

Search Result 1,292, Processing Time 0.026 seconds

Mixed Reality Image Generation Method for HMD-based Flight Simulator (HMD기반 비행 시뮬레이터를 위한 혼합현실 영상 생성 기법)

  • Joo Ha Hyun;Mun Hye Kang;Yong Ho Moon
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.59-67
    • /
    • 2023
  • Recently, interest in flight simulators based on HMD and mixed reality is increasing. However, they have limitations in providing various interactions and a sense of presence to pilot wearing HMD. To overcome these limitations, a mixed reality image corresponding to the interaction under the actual cockpit environment must be generated in real time and provided to the pilot. For this purpose, we proposed a mixed reality image generation method, in which the cockpit area including the pilot's body could be extracted from real image obtained from the camera attached to the HMD and then composed with virtual image to generate a high-resolution mixed reality image. Simulation results showed that the proposed method could provide mixed reality images to HMD at 30 Hz frame rate with 99% image composition accuracy.

The Performance Test of Anti-scattering X-ray Grid with Inclined Shielding Material by MCNP Code Simulation

  • Bae, Jun Woo;Kim, Hee Reyoung
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.111-115
    • /
    • 2016
  • Background: The scattered photons cause reduction of the contrast of radiographic image and it results in the degradation of the quality of the image. In order to acquire better quality image, an anti-scattering x-ray gird should be equipped in radiography system. Materials and Methods: The X-ray anti-scattering grid of the inclined type based on the hybrid concept for that of parallel and focused type was tested by MCNP code. The MCNPX 2.7.0 was used for the simulation based test. The geometry for the test was based on the IEC 60627 which was an international standard for diagnostic X-ray imaging equipment-Characteristics of general purpose and mammographic anti-scatter grids. Results and Discussion: The performance of grids with four inclined shielding material types was compared with that of the parallel type. The grid with completely tapered type the best performance where there were little performance difference according to the degree of inclination. Conclusion: It was shown that the grid of inclined type had better performance than that of parallel one.

Study on Integrated-Flight Simulation Method Using CFT Imagery (탑재비행시험 영상을 적용한 통합비행 시뮬레이션 기법 연구)

  • Jeong, Dong Gil;Yun, Hyo Seok;Park, Jin Hyen
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.1
    • /
    • pp.111-117
    • /
    • 2018
  • It is indispensable for a missile to track a target under the flight condition since the tracking capability affects the system performance considerably. The best way to verify the tracker's performance is flight test while it costs too much. Consequently, captive flight test or CFT has an important role in the development of a missile system. CFT, however, cannot simulate missile dynamics and is an offline and open-loop test. In this paper, we propose a new integrated-flight simulation(IFS) method using CFT imagery to overcome the limitation of synthetic image-based IFS method. This method increases the utilization of CFT's outputs and compensates the reality of imagery which lacks in the synthetic image-based IFS. Using this method make it possible to verify the system capability in various simulation modes.

Image-based Robust Control of Robot Manipulators with Image Jacobian and Dynamics Uncertainties (영상 자코비안 및 동특성 불확실성을 포함하는 로봇 매니퓰레이터의 영상기반 강인제어)

  • Kim, Chin-Su;Mo, Eun-Jong;Lee, Kang-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1047-1052
    • /
    • 2008
  • In this paper, we design an image-based robust controller to compensate uncertainties with image Jacobian and robot dynamics due to uncertain depth measurement and load variations. The proposed controller with eye-in-hand structure has separate terms to compensate each of uncertainties. The ultimate boundedness of the closed-loop system is proved by the Lyapunov approach. The performance of the proposed control system is demonstrated by simulation and experimental results a 5-link robot manipulator with two degree of freedom.

FUNDAMENTAL PERFORMANCE OF IMAGE CODING SCHEMES BASED ON MULTIPULSE MODEL

  • Kashiwagi, Takashi;Kobayashi, Daisuke;Koda, Hiromu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.825-829
    • /
    • 2009
  • In this paper, we examine the fundamental performance of image coding schemes based on multipulse model. First, we introduce several kinds of pulse search methods (i.e., correlation method, pulse overlap search method and pulse amplitude optimization method) for the model. These pulse search methods are derived from auto-correlation function of impulse responses and cross-correlation function between host signals and impulse responses. Next, we explain the basic procedure of multipulse image coding scheme, which uses the above pulse search methods in order to encode the high frequency component of an original image. Finally, by means of computer simulation for some test images, we examine the PSNR(Peak Signal-to-Noise Ratio) and computational complexity of these methods.

  • PDF

A progressive image transmission system based on wavelet (웨이브렛 기반 점진적 영상 전송 시스템)

  • 윤국진;조숙희;안충현
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.263-266
    • /
    • 2003
  • In this paper, we propose a new progressive image transmission system including the image coding scheme that efficiently uses the relationship between the properties of a spatial image and its wavelet transform. Firstly, an original image is decomposed into several layers by the wavelet transform, and simultaneously decomposed into 2"x2" blocks. Each image is classified into two image types according to the standard deviations of its blocks. And then each block is categorized into two regions by different thresholds according to the image types, i.e., significant activity region (SAR) and insignificant activity region (IAR). Simulation results show that the proposed coding method has better performance than the EZW and SPIHT in terms of image quality and transmitted bit-rate. In addition, it can be applied to the applications requiring the progressive image transmission.nsmission.

  • PDF

Design of Searchable Image Encryption System of Streaming Media based on Cloud Computing (클라우드 컴퓨팅 기반 스트리밍 미디어의 검색 가능 이미지 암호 시스템의 설계)

  • Cha, Byung-Rae;Kim, Dae-Kyu;Kim, Nam-Ho;Choi, Se-Ill;Kim, Jong-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.4
    • /
    • pp.811-819
    • /
    • 2012
  • In this paper, we design searchable image encryption system to provide the privacy and authentication on streaming media based on cloud computing. The searchable encryption system is the matrix of searchable image encryption system by extending the streaming search from text search, the search of the streaming service is available, and supports personal privacy and authentication using encryption/decryption and CBIR technique. In simple simulation of post-cut and image keyword creation, we can verify the possibilities of the searchable image encryption system based on streaming service.

A Robust Wavelet-Based Digital Watermarking Using Statistical Characteristic of Image and Human Visual System

  • Kim, Bong-Seok;Kwon, Kee-Koo;Kwon, Seong-Geun;Park, Kyung-Nam
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1019-1022
    • /
    • 2002
  • The current paper proposes a wavelet-based digital watermarking algorithm using statistical characteristic of image and human visual system (HVS). The original image is decomposed into 4-level using a discrete wavelet transform (DWT), then the watermark is embedded into the perceptually significant coefficients (PSCs) of the image. In general, the baseband of a wavelet-decomposed image includes most of the energy of the original image, thereby having a crucial effect on the image quality. As such, to retain invisibility, the proposed algorithm does not utilize the baseband. Plus, the wavelet coefficients on the lowest level are also excluded in the watermark-embedding step, because these coefficients call be easily eliminated and modified by lossy compression and common signal processing. As such, the PSCs are selected from all subbands, except for the baseband and subbands on the lowest level. Finally, using the selected PSCs, the watermark is then embedded based on spatial masking of the wavelet coefficients so as to provide invisibility and robustness. Computer simulation results confirmed that the proposed watermarking algorithm was more invisible and robust than conventional algorithms.

  • PDF

A study on game physics engine focused on real time physics (물리 엔진에 관한 고찰 : 실시간 물리 기술을 중심으로)

  • Ha, You-Jong;Park, Kyoung-Ju
    • Journal of Korea Game Society
    • /
    • v.9 no.5
    • /
    • pp.43-52
    • /
    • 2009
  • This paper analyzes the four game physics engines in terms of real time techniques. Real time physics is the technology that simplifies the physics-based simulation to apply for the real time applications such as game. Our study includes two commercial physics engines, Havok's Physics SDK and NVIDIA's PhysX SDK, and two open source projects, Open Dynamics Engine and Bullet physics engine. As a result, most of them covers rigid body dynamics and some include either deformable body simulation or fluids simulation, or both. For real time simulation, they adopt the simplified numerical methods, the effective in collision detection/response, and also use the parallel processing hardwares, i.e., multi core CPU, Physics processing unit(PPU), or graphics processing unit(GPU).

  • PDF

The Effect of Training Patch Size and ConvNeXt application on the Accuracy of CycleGAN-based Satellite Image Simulation (학습패치 크기와 ConvNeXt 적용이 CycleGAN 기반 위성영상 모의 정확도에 미치는 영향)

  • Won, Taeyeon;Jo, Su Min;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.177-185
    • /
    • 2022
  • A method of restoring the occluded area was proposed by referring to images taken with the same types of sensors on high-resolution optical satellite images through deep learning. For the natural continuity of the simulated image with the occlusion region and the surrounding image while maintaining the pixel distribution of the original image as much as possible in the patch segmentation image, CycleGAN (Cycle Generative Adversarial Network) method with ConvNeXt block applied was used to analyze three experimental regions. In addition, We compared the experimental results of a training patch size of 512*512 pixels and a 1024*1024 pixel size that was doubled. As a result of experimenting with three regions with different characteristics,the ConvNeXt CycleGAN methodology showed an improved R2 value compared to the existing CycleGAN-applied image and histogram matching image. For the experiment by patch size used for training, an R2 value of about 0.98 was generated for a patch of 1024*1024 pixels. Furthermore, As a result of comparing the pixel distribution for each image band, the simulation result trained with a large patch size showed a more similar histogram distribution to the original image. Therefore, by using ConvNeXt CycleGAN, which is more advanced than the image applied with the existing CycleGAN method and the histogram-matching image, it is possible to derive simulation results similar to the original image and perform a successful simulation.