• 제목/요약/키워드: Image training

검색결과 1,376건 처리시간 0.031초

조명 변화 환경에서 PCA 기반 얼굴인식 알고리즘의 신뢰도에 대한 연구 (Study on The Confidence Level of PCA-based Face Recognition Under Variable illumination Condition)

  • 조현종;강민구;문승빈
    • 전자공학회논문지CI
    • /
    • 제46권2호
    • /
    • pp.19-26
    • /
    • 2009
  • 본 논문은 PCA기반 얼굴인식 알고리즘에서 조명 변화에 따른 인식율의 변화 및 Cumulative Match Characteristic을 이용한 누적 식별 값 측정을 통해 알고리즘의 신뢰도를 확인하였다. 이를 위해 본 논문에서는 한 사람당 하나의 학습 영상만을 사용하는 경우뿐만 아니라 조명 조건이 다른 다중 학습 영상을 사용하여 실험하였고, 입력 영상 또한 다양한 조명 조건의 영상을 사용함으로서 학습 영상의 선택과 입력 영상의 조명 변화에 따른 알고리즘의 신뢰도에 관해 연구하였다. 실험 결과, 한사람 당 하나의 정면조명조건 학습 영상을 사용한 방식에 비하여 다중 학습 영상 사용 시 인식율은 떨어졌다. 그러나 학습 영상의 개수와 입력 영상의 조명 변화 범위에 관계없이 상위 유사도군에 들어가는 비율은 높은 양상을 보임으로서 조명 변화 환경에서 PCA 알고리즘의 인식 결과에 대한 신뢰도를 확인 할 수 있었다.

3D 가상현실 심상운동 프로그램 효과 및 노인체육 적용가능성에 대한 문헌고찰연구: 체화된 인지접근 (Review on the Articles of the Effect of Image Training Program with 3D Virtual Reality and Use for Physical Activity of Older Adults: Based on the Embodied Cognition)

  • 문경지;한경훈
    • 한국응용과학기술학회지
    • /
    • 제35권3호
    • /
    • pp.886-904
    • /
    • 2018
  • 3D 가상현실은 이미 여러 스포츠 분야에서 사용되고 있으며 특히 엘리트운동 선수들의 훈련 등에 적극 활용되고 있다. 주로 심상훈련 효용성을 극대화하기 위해 활용되고 있으며, 이에 따라 3D 가상현실 기술을 기반으로 심상훈련의 가능성, 유용성, 적합성이 여러 연구를 통해 입증되었다. 그러나 최근에는 가상현실에서의 운동이 더 이상 엘리트 운동선수들의 훈련에만 활용되는 것이 아니라 사회체육 등에 활발히 활용되는 추세에 있다. 3D 가상현실에서의 운동의 장점은 안정성이 높으며 외부환경에 대한 제한이 적다는 것이다. 이러한 장점을 고려할 때 이는 노인체육에 잘 활용될 수 있을 것이다. 따라서 본 연구에서는 노인을 위한 가상현실 기반 심상훈련의 활성화를 위해 국내 외 가상현실 관련 연구들이 어떠한 방법으로 연구되었으며 어떤 결과를 도출하였는지 면밀히 고찰하였다. 더불어 본 연구에서는 이러한 선행연구의 결과를 종합하여 추후 가상현실 연구의 활성화를 위한 방향과 후속 연구 과제를 위해 3D 가상현실 심상훈련의 간학문적 접근, 노인의 특성 및 지원요구를 고려한 지원, 습득된 기술의 일반화 및 유지 방안을 고려한 접근 필요성에 대해 제언을 제시하였다.

High-Resolution Satellite Image Super-Resolution Using Image Degradation Model with MTF-Based Filters

  • Minkyung Chung;Minyoung Jung;Yongil Kim
    • 대한원격탐사학회지
    • /
    • 제39권4호
    • /
    • pp.395-407
    • /
    • 2023
  • Super-resolution (SR) has great significance in image processing because it enables downstream vision tasks with high spatial resolution. Recently, SR studies have adopted deep learning networks and achieved remarkable SR performance compared to conventional example-based methods. Deep-learning-based SR models generally require low-resolution (LR) images and the corresponding high-resolution (HR) images as training dataset. Due to the difficulties in obtaining real-world LR-HR datasets, most SR models have used only HR images and generated LR images with predefined degradation such as bicubic downsampling. However, SR models trained on simple image degradation do not reflect the properties of the images and often result in deteriorated SR qualities when applied to real-world images. In this study, we propose an image degradation model for HR satellite images based on the modulation transfer function (MTF) of an imaging sensor. Because the proposed method determines the image degradation based on the sensor properties, it is more suitable for training SR models on remote sensing images. Experimental results on HR satellite image datasets demonstrated the effectiveness of applying MTF-based filters to construct a more realistic LR-HR training dataset.

A Study on Improving the Accuracy of Medical Images Classification Using Data Augmentation

  • Cheon-Ho Park;Min-Guan Kim;Seung-Zoon Lee;Jeongil Choi
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권12호
    • /
    • pp.167-174
    • /
    • 2023
  • 본 연구는 합성곱 신경망 모델에서 이미지 데이터 증강을 통하여 대장암 진단 모델의 정확도를 개선하고자 하였다. 이미지 데이터 증강은 기초 이미지 조작 방법을 이용하여 뒤집기, 회전, 이동, 밀림, 주밍을 사용하였다. 본 연구에서는 실험설계를 위해 보유하고 있는 5000개의 이미지 데이터에 대해 훈련 데이터와 평가 데이터로 각각 4000개와 1000개로 나누었으며, 훈련 데이터 4000개에 대해 이미지 데이터 증강 기법으로 4000개와 8000개의 이미지를 추가하여 모델을 학습시켰다. 평가 결과는 훈련 데이터 4000개, 8000개, 12000개에 대한 분류 정확도가 각각 85.1%, 87.0%, 90.2%로 나왔으며 이미지 데이터 증강에 따른 개선 효과를 확인하였다.

거리별 얼굴영상 자동 생성 방법을 이용한 원거리 얼굴인식 시스템 (Long Distance Face Recognition System using the Automatic Face Image Creation by Distance)

  • 문해민;반성범
    • 전자공학회논문지
    • /
    • 제51권11호
    • /
    • pp.137-145
    • /
    • 2014
  • 본 논문에서는 지능형 영상 감시시스템을 위한 LDA기반 원거리 얼굴인식 알고리즘을 제안한다. 기존 단일 거리 얼굴영상을 학습으로 사용한 얼굴인식 알고리즘은 원거리로 갈수록 얼굴인식률이 떨어지는 문제점이 있다. 실제 거리별 얼굴영상을 사용한 방법은 얼굴인식률은 향상되지만 사용자가 직접 움직이며 학습용 거리별 얼굴영상을 취득해야하는 문제점이 있다. 그러므로 본 논문에서는 단일 거리에서 취득한 얼굴영상을 이용해 거리별 얼굴영상을 자동으로 생성하여 학습으로 사용하는 방법을 제안한다. 제안하는 방법은 기존 얼굴인식 방법과 동일한 수준의 사용자 협조에서 거리별 사용자 등록영상을 생성할 수 있는 장점이 있다. 실험결과, 제안한 알고리즘은 기존 단일 거리 학습영상 기반 알고리즘에 비해 근거리에서 평균 16.3%, 원거리에서 평균 18.0% 향상된 얼굴인식 성능을 나타냈고, 실제 거리별 얼굴영상을 사용한 방법보다 근거리에서 평균 4.3%감소했지만, 원거리에서는 동일한 얼굴인식 성능을 나타냈다.

훈련 알고리듬을 이용한 변환격자코드에 의한 영상신호 압축 (Transform Trellis Image Coding Using a Training Algorithm)

  • 김동윤
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권1호
    • /
    • pp.83-88
    • /
    • 1994
  • The transform trellis code is an optimal source code as a block size and the constraint length of a shift register go to infinite for stationary Gaussian sources with the squared-error distortion measure. However to implement this code, we have to choose the finite block size and constraint length. Moreover real-world sources are inherently non stationary. To overcome these difficulties, we developed a training algorithm for the transform trellis code. The trained transform trellis code which uses the same rates to each block led to a variation in the resulting distortion from one block to another. To alleviate this non-uniformity in the encoded image, we constructed clusters from the variance of the training data and assigned different rates for each cluster.

  • PDF

애완동물 분류를 위한 딥러닝 (Deep Learning for Pet Image Classification)

  • 신광성;신성윤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.151-152
    • /
    • 2019
  • 본 논문에서는 동물 이미지 분류를위한 작은 데이터 세트를 기반으로 개선 된 심층 학습 방법을 제안한다. 첫째, CNN은 소규모 데이터 세트에 대한 교육 모델을 작성하고 데이터 세트를 사용하여 교육 세트의 데이터 세트를 확장하는 데 사용된다. 둘째, VGG16과 같은 대규모 데이터 세트에 사전 훈련 된 네트워크를 사용하여 작은 데이터 세트의 병목을 추출하여 새로운 교육 데이터 세트 및 테스트 데이터 세트로 두 개의 NumPy 파일에 저장하고, 마지막으로 완전히 연결된 네트워크를 새로운 데이터 세트로 학습한다.

  • PDF

Virtual Reality Community Gait Training Using a 360° Image Improves Gait Ability in Chronic Stroke Patients

  • Kim, Myung-Joon
    • The Journal of Korean Physical Therapy
    • /
    • 제32권3호
    • /
    • pp.185-190
    • /
    • 2020
  • Purpose: Gait and cognitive impairment in stroke patients exacerbate fall risk and mobility difficulties during multi-task walking. Virtual reality can provide interesting and challenging training in a community setting. This study evaluated the effect of community-based virtual reality gait training (VRGT) using a 360-degree image on the gait ability of chronic stroke patients. Methods: Forty-five chronic stroke patients who were admitted to a rehabilitation hospital participated in this study. Patients meeting the selection criteria were randomly divided into a VRGT group (n=23) and a control group (n=22). Both these groups received general rehabilitation. The VRGT group was evaluated using a 360-degree image that was recorded for 50 minutes a day, 5 days per week for a total of 6 weeks after their training. The control group received general treadmill training for the same amount of time as that of the VRGT group. The improvement in the spatiotemporal parameters of gait was evaluated using a gait analyzer system before and after training. Results: The spatiotemporal gait parameters showed significant improvements in both groups compare with the baseline measurements (p<0.05), and the VRGT group showed more improvement than the control group (p<0.05). Conclusion: Community-based VRGT has been shown to improve the walking ability of chronic stroke patients and is expected to be used in rehabilitation of stroke patients in the future.

웨이블릿 영역에서 훈련 없는 은닉 마코프 트리 모델을 이용한 영상 보간 (Image Interpolation Using Hidden Markov Tree Model Without Training in Wavelet Domain)

  • 우동헌;엄일규;김유신
    • 대한전자공학회논문지SP
    • /
    • 제41권4호
    • /
    • pp.31-37
    • /
    • 2004
  • 웨이블릿 변환은 영상을 분석하고 처리하는데 유용한 도구로써 영상 압축, 영상 잡음 제거 등의 분야에서 우수한 성능을 보여주었다. 웨이블릿 계수들은 은닉 마코프 트리(Hidden Markov Tree: HMT) 모델에 의해 효과적으로 모델링 될 수 있다. 그러나 영상 보간에서 은닉 마코프 트리 모델을 적용하기 위해서는 훈련 과정이 필요하며 훈련 과정에서 획득된 파라미터들이 입력 영상과 잘 맞지 않는 단점이 있다. 본 논문에서는 웨이블릿 영역에서 영상 보간을 위해 은닉 마코프 트리의 구조를 사용하되, 그 파라미터들은 훈련 과정 없이 부대역간의 통계적 특성을 이용하여 직접 추정한다. 제안 방법에서 웨이블릿 계수는 가우스 혼합 모델(Gauss Mixture Model: GMM)로 모델링 된다. 가우스 혼합 모델의 상태 천이 확률은 부대역간의 웨이블릿 계수의 통계적 천이 특성을 이용하여 결정하며, 각 상태의 분산은 웨이블릿 계수의 지수적 감소(exponential decay) 특성에 의해, 추정된다. 모의실험에서 제안 방법은 전통적인 bicubic 방법이나 훈련 과정을 필요로 하는 은닉 마코프 모델을 사용한 방법보다 여러 테스트 영상들에 대해서 개선된 성능을 보여주었다.

일반화 능력이 향상된 CNN 기반 위조 영상 식별 (CNN-Based Fake Image Identification with Improved Generalization)

  • 이정한;박한훈
    • 한국멀티미디어학회논문지
    • /
    • 제24권12호
    • /
    • pp.1624-1631
    • /
    • 2021
  • With the continued development of image processing technology, we live in a time when it is difficult to visually discriminate processed (or tampered) images from real images. However, as the risk of fake images being misused for crime increases, the importance of image forensic science for identifying fake images is emerging. Currently, various deep learning-based identifiers have been studied, but there are still many problems to be used in real situations. Due to the inherent characteristics of deep learning that strongly relies on given training data, it is very vulnerable to evaluating data that has never been viewed. Therefore, we try to find a way to improve generalization ability of deep learning-based fake image identifiers. First, images with various contents were added to the training dataset to resolve the over-fitting problem that the identifier can only classify real and fake images with specific contents but fails for those with other contents. Next, color spaces other than RGB were exploited. That is, fake image identification was attempted on color spaces not considered when creating fake images, such as HSV and YCbCr. Finally, dropout, which is commonly used for generalization of neural networks, was used. Through experimental results, it has been confirmed that the color space conversion to HSV is the best solution and its combination with the approach of increasing the training dataset significantly can greatly improve the accuracy and generalization ability of deep learning-based identifiers in identifying fake images that have never been seen before.