• Title/Summary/Keyword: Image rotation

Search Result 842, Processing Time 0.028 seconds

Geometric Modeling of Linear Pushbroom Images : SPOT5 Images

  • Koo, Ja-Hyuck;Jung, Hyung-Sup;Lee, Ho-Nam
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1165-1167
    • /
    • 2003
  • Geometric corrections are required to compensate skew effects, earth rotation effects and so on. Parameters for geometric modeling can be acquired from the metadata information. These parameters allow to locate on ground every pixel of acquired images. In this paper, we tested the precision of geometric modeling of linear pushbroom images, acquired by SPOT 3 and 5 using the satellite orbit information itself without additional external data. The result acquired from examination to recovery the geometry of image using 30 GCPs have about 650m RMSE in SPOT 3 and about 170m RMSE in SPOT 5.

  • PDF

The study for improve a method of Marker auto- identification (마커 자동 인식 향상 방법에 관한 연구)

  • Lee, Hyun-Seob
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.23-38
    • /
    • 2003
  • The purpose of this study is to develop an improved marker auto-identification algorithm for reduce of data processing time through improve the efficiency of noise elimination and marker separation. The maker auto-identification algorithm was programming named KUMAS used Delphi language. For the study, various experiments were conducted for the verification of KUMAS. and compared two systems of established with the KUMAS. Four different motions - cycling, gait, rotation, and pendulum -, were selected and tested. Motions were filmed 30Hz frames rate per second. ${\chi}^2$ used for statistical analysis. Significant level were ${\alpha}=.05$. The test results were as follow. 1. Increased the success ratio of marker auto-identification. 2. The efficiency of marker auto-identification was remarkably improved through marker separation, noise elimination. 3. The marker auto-identification ability was improved in 2D-image plane include the 3D motion. 4. Significant different were found between KUMAS and B-SYS(established system) with non-input the artificial noise frames, input the artificial noise frames and total frames.

Hand Segmentation Using Depth Information and Adaptive Threshold by Histogram Analysis with color Clustering

  • Fayya, Rabia;Rhee, Eun Joo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.5
    • /
    • pp.547-555
    • /
    • 2014
  • This paper presents a method for hand segmentation using depth information, and adaptive threshold by means of histogram analysis and color clustering in HSV color model. We consider hand area as a nearer object to the camera than background on depth information. And the threshold of hand color is adaptively determined by clustering using the matching of color values on the input image with one of the regions of hue histogram. Experimental results demonstrate 95% accuracy rate. Thus, we confirmed that the proposed method is effective for hand segmentation in variations of hand color, scale, rotation, pose, different lightning conditions and any colored background.

On Design of Visual Servoing using an Uncalibrated Camera and a Calibrated Robot

  • Uchikado, Shigeru;Morita, Masahiko;Osa, Yasuhiro;Mabuchi, Tesuo;Tanya, Kanya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.23.2-23
    • /
    • 2001
  • In this paper we deal with visual servoing that can control a robot arm with a camera using information of images only, without estimating 3D position and rotation of the robot arm. Here it is assumed that the robot arm is calibrated and the camera is uncalibrated. We use a pinhole camera model as the camera one. The essential notion can be show, that is, epipolar geometry, epipole, epipolar equation, and epipolar constrain. These play an important role in designing visual servoing. For easy understanding of the proposed method we first show a design in case of the calibrated camera. The design is constructed by 4 steps and the directional motion of the robot arm is fixed only to a constant direction. This means that an estimated epipole denotes the direction, to which the robot arm translates in 3D space, on the image plane.

  • PDF

A Study on Face Recognition and Reliability Improvement Using Classification Analysis Technique

  • Kim, Seung-Jae
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.192-197
    • /
    • 2020
  • In this study, we try to find ways to recognize face recognition more stably and to improve the effectiveness and reliability of face recognition. In order to improve the face recognition rate, a lot of data must be used, but that does not necessarily mean that the recognition rate is improved. Another criterion for improving the recognition rate can be seen that the top/bottom of the recognition rate is determined depending on how accurately or precisely the degree of classification of the data to be used is made. There are various methods for classification analysis, but in this study, classification analysis is performed using a support vector machine (SVM). In this study, feature information is extracted using a normalized image with rotation information, and then projected onto the eigenspace to investigate the relationship between the feature values through the classification analysis of SVM. Verification through classification analysis can improve the effectiveness and reliability of various recognition fields such as object recognition as well as face recognition, and will be of great help in improving recognition rates.

Augmented Reality Service Based on Object Pose Prediction Using PnP Algorithm

  • Kim, In-Seon;Jung, Tae-Won;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.295-301
    • /
    • 2021
  • Digital media technology is gradually developing with the development of convergence quaternary industrial technology and mobile devices. The combination of deep learning and augmented reality can provide more convenient and lively services through the interaction of 3D virtual images with the real world. We combine deep learning-based pose prediction with augmented reality technology. We predict the eight vertices of the bounding box of the object in the image. Using the predicted eight vertices(x,y), eight vertices(x,y,z) of 3D mesh, and the intrinsic parameter of the smartphone camera, we compute the external parameters of the camera through the PnP algorithm. We calculate the distance to the object and the degree of rotation of the object using the external parameter and apply to AR content. Our method provides services in a web environment, making it highly accessible to users and easy to maintain the system. As we provide augmented reality services using consumers' smartphone cameras, we can apply them to various business fields.

Rotation Transformation Invariant Texture Classification for Object Recognition of Surveillance Camera Image (감시 카메라 영상의 객체 인식을 위한 회전 변화에 강인한 질감 분류)

  • Kim, Won-Hee;Park, Seong-Mo;Kim, Jong-Nam
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.171-172
    • /
    • 2009
  • 질감 분류 기술은 패턴인식과 컴퓨터 비전 분야에서 널리 사용되는 기술로서, 최근 들어서는 감시 카메라 시스템에서의 정확한 객체 인식을 위한 회전 변화에 강인한 질감 분류 연구가 진행되고 있다. 본 논문에서는 순환 가보 웨이블렛 필터를 이용한 회전 변환에 강인한 질감 분류 방법을 제안한다. 제안하는 방법은 순환 가보 웨이블렛 필터링된 영상에서 전역 및 지역 특징 벡터를 계산하고 특징 벡터의 차이를 이용한 유사도 측정 판별식으로 질감 분류를 수행한다. Brodatz 질감 앨범을 이용한 실험에서 기존의 방법들보다 2~6% 향상된 질감 분류 비율을 확인할 수 있었다. 제안하는 방법은 질감 기반 객체 인식에 관련된 응용 분야에서 유용하게 사용될 수 있다.

Identification via Retinal Vessels Combining LBP and HOG

  • Ali Noori;Esmaeil Kheirkhah
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.187-192
    • /
    • 2023
  • With development of information technology and necessity for high security, using different identification methods has become very important. Each biometric feature has its own advantages and disadvantages and choosing each of them depends on our usage. Retinal scanning is a bio scale method for identification. The retina is composed of vessels and optical disk. The vessels distribution pattern is one the remarkable retinal identification methods. In this paper, a new approach is presented for identification via retinal images using LBP and hog methods. In the proposed method, it will be tried to separate the retinal vessels accurately via machine vision techniques which will have good sustainability in rotation and size change. HOG-based or LBP-based methods or their combination can be used for separation and also HSV color space can be used too. Having extracted the features, the similarity criteria can be used for identification. The implementation of proposed method and its comparison with one of the newly-presented methods in this area shows better performance of the proposed method.

Preliminary Study on Generating Three-Dimensional Floor Layout of Construction Sites (건설 시공 현장 3차원 층 단위 레이아웃 생성 모델 기초 연구)

  • Hong, Sungwon;Kim, Taejin;Park, Jiwon;Lee, Soohyoung;Kim, Taehoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.285-286
    • /
    • 2023
  • The visualization of information serves as a valuable tool for facilitating communication and exchange of opinions among stakeholders by conveying information in an intuitive and clear manner. As a preliminary study of visualization for construction field, this study proposed a model for generating three-dimensional floor layout using 360-degree panoramic cameras. The model integrates the layouts by calculating normal vectors of the plane which has openings, and applying translation and rotation matrices between the normal vectors. The results of this study can contribute to improving communication in construction sites by incorporating visualization, and further to the digital transformation of the construction industry.

  • PDF

Evaluation of Image Quality in Micro-CT System Using Constrained Total Variation (TV) Minimization (Micro-CT 시스템에서 제한된 조건의 Total Variation (TV) Minimization을 이용한 영상화질 평가)

  • Jo, Byung-Du;Choi, Jong-Hwa;Kim, Yun-Hwan;Lee, Kyung-Ho;Kim, Dae-Hong;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.252-260
    • /
    • 2012
  • The reduction of radiation dose from x-ray is a main concern in computed tomography (CT) imaging due to the side-effect of the dose on human body. Recently, the various methods for dose reduction have been studied in CT and one of the method is a iterative reconstruction based on total variation (TV) minimization at few-views data. In this paper, we evaluated the image quality between total variation (TV) minimization algorithm and Feldkam-Davis-kress (FDK) algorithm in micro computed tomography (CT). To evaluate the effect of TV minimization algorithm, we produced a cylindrical phantom including contrast media, water, air inserts. We can acquire maximum 400 projection views per rotation of the x-ray tube and detector. 20, 50, 90, 180 projection data were chosen for evaluating the level of image restoration by TV minimization. The phantom and mouse image reconstructed with FDK algorithm at 400 projection data used as a reference image for comparing with TV minimization and FDK algorithm at few-views. Contrast-to-noise ratio (CNR), Universal quality index (UQI) were used as a image evaluation metric. When projection data are not insufficient, our results show that the image quality of reconstructed with TV minimization is similar to reconstructed image with FDK at 400 view. In the cylindrical phantom study, the CNR of TV image was 5.86, FDK image was 5.65 and FDK-reference was 5.98 at 90-views. The CNR of TV image 0.21 higher than FDK image CNR at 90-views. UQI of TV image was 0.99 and FDK image was 0.81 at 90-views. where, the number of projection is 90, the UQI of TV image 0.18 higher than FDK image at 90-views. In the mouse study UQI of TV image was 0.91, FDK was 0.83 at 90-views. the UQI of TV image 0.08 higher than FDK image at 90-views. In cylindrical phantom image and mouse image study, TV minimization algorithm shows the best performance in artifact reduction and preserving edges at few view data. Therefore, TV minimization can potentially be expected to reduce patient dose in clinics.